. 24/7 Space News .
TECH SPACE
Engineers develop a new kind of shape-memory material
by David L. Chandler for MIT News
Boston MA (SPX) Oct 06, 2022

Diagrams show the two different ways that the atomic structure of the shape-memory material, zirconia ceramic, can be configured. An external trigger such as a temperature change can shift the configuration from one shape to the other, changing its dimensions and allowing it to exert pressure or do other work. The background is an electron microscope image of the material, with the two colors indicating the two different configurations.

Shape-memory metals, which can revert from one shape to a different one simply by being warmed or otherwise triggered, have been useful in a variety of applications, as actuators that can control the movement of various devices. Now, the discovery of a new category of shape-memory materials made of ceramic rather than of metal could open up a new range of applications, especially for high-temperature settings, such as actuators inside a jet engine or a deep borehole.

The new findings were reported in the journal Nature, in a paper by former doctoral student Edward Pang PhD '21 and professors Gregory Olson and Christopher Schuh, all in MIT's Department of Materials Science and Engineering.

Shape-memory materials, Schuh explains, have two distinct shapes, and can switch back and forth between them. They can be easily triggered by temperature, mechanical stress, or electric or magnetic fields, to change shape in a way that exerts force, he says.

"They are interesting materials because they're sort of like a solid-state piston," he says - in other words, a device that can push against something. But while a piston is an assembly of many parts, a "shape-memory material is a solid-state material that does all of that. It doesn't need a system. It doesn't need many parts. It's just a material, and it changes its shape spontaneously. It can do work. So, it's interesting as a 'smart material,'" he says.

Shape-memory metals have long been used as simple actuators in a variety of devices but are limited by the achievable service temperatures of the metals used, usually a few hundred degrees Celsius at most. Ceramics can withstand much higher temperatures, sometimes up to thousands of degrees, but are known for their brittleness. Now, the MIT team has found a way to overcome that and produce a ceramic material that can actuate without accumulating damage, thus making it possible for it to function reliably as a shape-memory material through many cycles of use.

"The shape-memory materials that are out there in the world, they're all metal," says Schuh. "When you change a material's shape down at the atomic level, there's a whole lot of damage that can be created. Atoms have to reshuffle and change their structure. And as atoms are moving and reshuffling, it's sort of easy to get them in the wrong spots and create defects and damage the material, which leads them to fatigue and eventually fall apart."

He adds that "you end up with materials that can deform a few times, but then eventually they degrade and they can fall apart. And because metals are so ductile, they're a little more damage resistant, and so the field has really focused on metals because when a metal is damaged on the inside, it can tolerate it."

Ceramics, by contrast, don't tolerate damage well at all, and normally don't bend but fracture. Zirconia is one that is known to have a shape-memory property, but it accumulates damage very easily during a shape memory cycle - a property measured as high hysteresis. "What we wanted to do with this work was design a new ceramic and specifically target that hysteresis. We wanted to design a ceramic where the [shape] transformation is somehow still gigantic: We want to do a lot of work. But internally, at the atomic scale, it's more gentle."

Schuh explains that Pang, who led the work, "took all of the modern tools of science, everything you can name - computational thermodynamics, phase transformation physics, crystallographic calculations, machine learning - and he put all these tools together in a totally new way" in order to solve the problem of creating such a material.

The result was a new variation of zirconia. "Basically, it's zirconia," Schuh says. "It looks and smells and tastes just like zirconia that people already know and use, including like cubic zirconia in jewelry." But some atoms of different elements have been introduced into its structure in a way that alters some of its properties. These elements "dissolve into the lattice, and they sculpt it, and they change that transformation, they make it more gentle at the atomic scale."

The hysteresis changed so dramatically that it now resembles that of metals, Schuh says. "That was a huge, huge change - we're talking about a factor of 10." And the deformation that the material can achieve amounts to about 10 percent, meaning that a rod of this material could get 10 percent longer when triggered - enough to do significant work.

One common application of shape-memory materials is relief valves, where if a tank of something exceeds a certain critical temperature, the valve is triggered by that heat, automatically opening to relieve pressure and prevent explosion. The new ceramic material could now extend that capability to far higher-temperature situations than present materials could handle.

For example, actuators that direct airflow inside a jet engine might be a useful application, Pang says. While the overall environment there is hot, there are various channels of airflow being controlled, so those flows could be used to trigger a shape-memory ceramic by directing cooler or hotter air on the device as needed.

Today, shape-memory ceramics that exist "are sort of a laboratory curiosity," because they fall apart after a few cycles, Schuh says. "This is a step in the direction of making something that can reproducibly and reliably operate many, many times in service."

The team plans to continue exploring the material, finding ways to produce it in bigger batches and more complex shapes, and testing its ability to withstand many cycles of transformation.

What attracted him to this project in the first place, Schuh says, is its potential for broad applications. "There are things we do with complex mechanical systems that have lots of parts and assemblies, and the idea that you can replace a complicated package of things with a single material that has the functionality built in at the atomic scale - to me, that's attractive because it makes large, complicated things into small, simple things. In some ways it's like replacing vacuum tubes with transistors."

While it's hard to predict the areas where this material will find its first practical uses, Schuh says that, for example, "it's very hard to scale down a hydraulic piston. It's hard to make that on the micro scale." But now, "the idea that you have a solid-state version of that at very small scales - I've always felt there are a lot of applications for microscale motions. Microrobots in small places, lab-on-a-chip valves, lots of small things that need actuation could benefit from smart materials like this."

These researchers "show how materials science knowledge, sound design principles and creative thinking can be combined to discover materials that would be considered impossible to find otherwise," says Raymundo Arroyave, a professor of materials science and engineering at Texas A and M University, who was not associated with this work. This work, he says, "is a beautiful demonstration of the power of sound 'materials science thinking,' grounded by well-tested materials design principles to demonstrate that shape memory ceramics can have properties that are close to some of the best of their metallic counterparts."

The work was supported by the U.S. Army Research Office, in part through MIT's Institute for Soldier Nanotechnologies, and by the U.S. National Science Foundation.


Related Links
MIT Institute for Soldier Nanotechnologies
Department of Materials Science and Engineering
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Crisis-hit German toilet paper maker turns to coffee grounds
Frankfurt (AFP) Sept 18, 2022
Choked by soaring energy and wood pulp costs, German toilet paper maker Hakle is turning to waste from coffee production to stay afloat and help the environment. Just two years ago, at the height of the coronavirus pandemic, the firm profited from a stampede of consumers rushing to stock up on essentials. But with the health crisis abating, Russia's invasion of Ukraine has sparked skyrocketing energy costs, forcing Hakle to file for insolvency recently. Innovation could now be the key to sur ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
SpaceX Crew 5 mission set to lift off for International Space Station

NASA resets for Crew-5, Artemis I missions post-Ian

Five things to know about the Nobel prizes

NASA postpones Crew-5 mission over Hurricane Ian

TECH SPACE
SpaceX aborts launch of two communication satellites into orbit

AFRL Commander moderates Future Of Propulsion Panel At AFA Air, Space, Cyber Conference

NASA eyes November for launch attempt of Moon rocket

Elon Musk may help NASA extend life for Hubble

TECH SPACE
India loses contact with budget Mars orbiter after eight years

Unknown debris dislodges from Ingenuity Mars helicopter's foot during 33rd flight

A broken rock won't break our Team

Insights into Utopia Basin revealed by Mars rover Zhurong

TECH SPACE
China begins search for fourth astronaut generation

China launches multiple satellites in back to back launches

Space missions bring Down-to-Earth benefits

Shenzhou XIV astronauts in 4-hour spacewalk

TECH SPACE
Satellogic signs 3 year deal with Albania to access dedicated satellite constellation

AE Industrial Partners makes significant investment in York Space Systems

ViaSat-3 achieves flight configuration

ESA business boosts small space companies

TECH SPACE
Record quarterly profit for Indian software giant TCS

Facebook parent Meta unveils AI video generator Make-a-Video

Some everyday materials have memories, and now they can be erased

Engineers develop a new kind of shape-memory material

TECH SPACE
Laughing gas in space could mean life

Synthetic lava in the lab aids exoplanet exploration

New theory concludes that the origin of life on Earth-like planets is likely

Big planets get a head start in pancake-thin nurseries

TECH SPACE
Juno probe takes detailed photo of Jupiter's moon, Europa

Juno will perform close flyby of Jupiter's icy moon Europa

Planetary-scale 'heat wave' discovered in Jupiter's atmosphere

First 3D renders from JunoCam data reveal "frosted cupcake" clouds on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.