![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Houston TX (SPX) Oct 03, 2017
The temperature of Chamber A at NASA's Johnson Space Center in Houston has begun to rise, signaling the beginning of the end of James Webb Space Telescope's cryogenic testing. On Sept. 27, engineers began to warm Chamber A to bring the Webb telescope back to room temperature - the last step before the chamber's massive, monolithic door unseals and Webb emerges in October. Everyone can watch the temperature ofChamber A rise during the next few weeks by checking out the temperature overlay on the online Webbcam. The overlay shows the temperature of the gaseous helium shroud, the innermost of two shrouds that were used to cool the telescope to cryogenic (extremely cold) temperatures. The two shrouds are thin, cylindrical, metal shells that envelope the telescope. "Engineers will perform the warming gradually ... to ensure the safety of the telescope, its science instruments, and the supporting equipment," said Randy Kimble, an integration and test project scientist for the Webb Telescope at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "Once the chamber and its contents are warmed to near room temperature, engineers will begin to pump gaseous nitrogen into [the chamber] until it is once again at one atmosphere of pressure (at sea level) and no longer a vacuum." The engineers are using heaters to incrementally warm the inside of the chamber. In addition to this, they will warm the two enveloping shrouds, which previously had frigid cryogens (substances used to produce extremely cold temperatures) flowing through them. In addition to the heaters, the engineers will gradually raise the temperature of the helium gas flowing through the innermostshroud. Carl Reis, the test director for Webb's cryogenic testing at Johnson, said the temperature of that shroud, which is the temperature displayed on the Webbcam overlay, will reach about 68 degrees Fahrenheit (about 20 degrees Celsius / 293 kelvins) before the Chamber A door opens. He added that the engineers will stop the flow of liquid nitrogen into the outermost shroud,allowing the liquid nitrogen already inside the shroud to "boil off" as it warms. Liquid nitrogen begins to evaporate at about minus 321 degrees Fahrenheit (about minus 196 degrees Celsius / 77 kelvins). The team tested Webb in the airless cold of Chamber A because, in the vacuum of space, the telescope must be kept extremely cold in order to be able to detect the infrared light from very faint, distant objects. Warm objects emit infrared radiation, and any excess warmth could givefalse signals to the telescope. The cryogenic testing ensured all of Webb's components, including its science instruments and mirrors, worked as expected in a space-like environment. Webb next journeys to Northrop Grumman in Redondo Beach, California, where it will be integrated with the spacecraft and sunshield, thus forming the completedobservatory. Once there, it will undergo more tests duringwhat is called "observatory-level testing." This testing is the last exposure to a simulated launch environment before flight and deployment testing on the whole observatory. The James Webb Space Telescope, the scientific complement to NASA's Hubble Space Telescope, will be the most powerful space telescope ever built. Webb is an international project led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency). The James Webb Space Telescope - Webbcam is here
![]() Santa Cruz CA (SPX) Sep 27, 2017 Materials scientist Nobuhiko Kobayashi wasn't quite sure why the astronomer he met at a wine-tasting several years ago was so interested in his research, but as he learned more about telescope mirrors it began to make sense. "It turns out that improving the performance of mirrors is all about thin-film materials, and that's what I do. So then I got hooked," said Kobayashi, a professor of e ... read more Related Links Webb Telescope Stellar Chemistry, The Universe And All Within It
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |