. 24/7 Space News .
TECH SPACE
Engineering the boundary between 2D and 3D materials
by David L. Chandler fpr MIT News
Boston MA (SPX) Mar 02, 2021

These images of "islands" of gold atoms deposited on a layer of two-dimensional molybdenum sulfide were produced by two different modes, using a new scanning tunneling electron microscope (STEM) in the new MIT.nano facility. By combining the data from the two different modes the researchers were able to figure out the three-dimensional arrangement of atoms where the two materials meet.

In recent years, engineers have found ways to modify the properties of some "two- dimensional" materials, which are just one or a few atoms thick, by stacking two layers together and rotating one slightly in relation to the other. This creates what are known as moire patterns, where tiny shifts in the alignment of atoms between the two sheets create larger-scale patterns. It also changes the way electrons move through the material, in potentially useful ways.

But for practical applications, such two-dimensional materials must at some point connect with the ordinary world of 3D materials. An international team led by MIT researchers has now come up with a way of imaging what goes on at these interfaces, down to the level of individual atoms, and of correlating the moire patterns at the 2D-3D boundary with the resulting changes in the material's properties.

The new findings are described in the journal Nature Communications, in a paper by MIT graduate students Kate Reidy and Georgios Varnavides, professors of materials science and engineering Frances Ross, Jim LeBeau, and Polina Anikeeva, and five others at MIT, Harvard University, and the University of Victoria in Canada.

Pairs of two-dimensional materials such as graphene or hexagonal boron nitride can exhibit amazing variations in their behavior when the two sheets are just slightly twisted relative to each other. That causes the chicken-wire-like atomic lattices to form moire patterns, the kinds of odd bands and blobs that sometimes appear when taking a picture of a printed image, or through a window screen. In the case of 2D materials, "it seems like anything, every interesting materials property you can think of, you can somehow modulate or change by twisting the 2D materials with respect to each other," says Ross, who is the Ellen Swallow Richards Professor at MIT.

While these 2D pairings have attracted scientific attention worldwide, she says, little has been known about what happens where 2D materials meet regular 3D solids. "What got us interested in this topic," Ross says, was "what happens when a 2D material and a 3D material are put together. Firstly, how do you measure the atomic positions at, and near, the interface? Secondly, what are the differences between a 3D-2D and a 2D-2D interface? And thirdly, how you might control it - is there a way to deliberately design the interfacial structure" to produce desired properties?

Figuring out exactly what happens at such 2D-3D interfaces was a daunting challenge because electron microscopes produce an image of the sample in projection, and they're limited in their ability to extract depth information needed to analyze details of the interface structure. But the team figured out a set of algorithms that allowed them to extrapolate back from images of the sample, which look somewhat like a set of overlapping shadows, to figure out which configuration of stacked layers would yield that complex "shadow."

The team made use of two unique transmission electron microscopes at MIT that enable a combination of capabilities that is unrivalled in the world. In one of these instruments, a microscope is connected directly to a fabrication system so that samples can be produced onsite by deposition processes and immediately fed straight into the imaging system. This is one of only a few such facilities worldwide, which use an ultrahigh vacuum system that prevents even the tiniest of impurities from contaminating the sample as the 2D-3D interface is being prepared. The second instrument is a scanning transmission electron microscope located in MIT's new research facility, MIT.nano. This microscope has outstanding stability for high-resolution imaging, as well as multiple imaging modes for collecting information about the sample.

Unlike stacked 2D materials, whose orientations can be relatively easily changed by simply picking up one layer, twisting it slightly, and placing it down again, the bonds holding 3D materials together are much stronger, so the team had to develop new ways of obtaining aligned layers. To do this, they added the 3D material onto the 2D material in ultrahigh vacuum, choosing growth conditions where the layers self-assembled in a reproducible orientation with specific degrees of twist. "We had to grow a structure that was going to be aligned in a certain way," Reidy says.

Having grown the materials, they then had to figure out how to reveal the atomic configurations and orientations of the different layers. A scanning transmission electron microscope actually produces more information than is apparent in a flat image; in fact, every point in the image contains details of the paths along which the electrons arrived and departed (the process of diffraction), as well as any energy that the electrons lost in the process. All these data can be separated out so that the information at all points in an image can be used to decode the actual solid structure. This process is only possible for state-of-the-art microscopes, such as that in MIT.nano, which generates a probe of electrons that is unusually narrow and precise.

The researchers used a combination of techniques called 4D STEM and integrated differential phase contrast to achieve that process of extracting the full structure at the interface from the image. Then, Varnavides says, they asked, "Now that we can image the full structure at the interface, what does this mean for our understanding of the properties of this interface?" The researchers showed through modeling that electronic properties are expected to be modified in a way that can only be understood if the full structure of the interface is included in the physical theory. "What we found is that indeed this stacking, the way the atoms are stacked out-of-plane, does modulate the electronic and charge density properties," he says.

Ross says the findings could help lead to improved kinds of junctions in some microchips, for example. "Every 2D material that's used in a device has to exist in the 3D world, and so it has to have a junction somehow with three-dimensional materials," she says. So, with this better understanding of those interfaces, and new ways to study them in action, "we're in good shape for making structures with desirable properties in a kind of planned rather than ad hoc way."

"The present work opens a field by itself, allowing the application of this methodology to the growing research line of moire engineering, highly important in fields such as quantum physics or even in catalysis," says Jordi Arbiol of the Catalan Institute of Nanoscience and Nanotechnology in Spain, who was not associated with this work.

"The methodology used has the potential to calculate from the acquired local diffraction patterns the modulation of the local electron momentum," he says, adding

that "the methodology and research shown here has an outstanding future and high interest for the materials science community."

Research Report: "Direct imaging and electronic structure modulation of moire superlattices at the 2D/3D interface"


Related Links
MIT.nano
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
China's appetite for copper provides Chile with opportunity
Santiago (AFP) Feb 25, 2021
With the price of copper reaching a 10-year high thanks in no small part to China's insatiable appetite, Chile, the world's leading producer, faces a "unique" opportunity, experts told AFP. Copper rose to $4.21 a pound on the London Metal Exchange on Wednesday, meaning it has doubled its price since March 2020. Now experts believe its price, spurred by demand from China, could beat all records in the coming weeks, surpassing its previous high of $4.60 in February 2011 and potentially rising abov ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
NASA, Boeing update Starliner orbital flight test date

Cygnus resupply ship bolted to ISS Unity Module

NASA's Perseverance rover beams back spectacular new images

Northrop Grumman ready for next ISS supply run

TECH SPACE
NASA delays new test-firing of moon rocket

Russia plans at least 10 launches from Baikonur in 2021

DLR ready to test first upper stage for Ariane 6

NASA assigns astronauts to next SpaceX Crew-4 mission to ISS

TECH SPACE
Martian moons have a common ancestor

Life from Earth could temporarily survive on Mars

NASA's Mars Perseverance Rover Provides Front-Row Seat to Landing, First Audio Recording of Red Planet

Mars helicopter reports in, New color images available

TECH SPACE
China explores space with self-reliance, open mind

China begins assembly of Long March 5B to launch space station core

Xi lauds China's progress in space missions

Chinese tracking vessel sets sail for monitoring missions in Indian Ocean

TECH SPACE
SpaceX plans 20th Starlink launch Sunday evening from Florida

Business support scheme to boost UK space industry has lift off

Advanced Manufacturing Supercluster Funds Deployment Of Flexible Automation Solutions

French village says 'non' to Elon Musk's space-age internet

TECH SPACE
Polymer film protects from electromagnetic radiation, signal interference

Researchers grow artificial hairs with clever physics trick

Brand new findings on fire safety in space

China's appetite for copper provides Chile with opportunity

TECH SPACE
The Milky Way may be swarming with planets with oceans and continents like here on Earth

On the quest for other Earths

The search for life beyond Earth

NASA's TESS discovers new worlds in a river of young stars

TECH SPACE
Solar system's most distant planetoid confirmed

Peering at the Surface of a Nearby Moon

A Hot Spot on Jupiter

The 15th Anniversary of New Horizons Leaving Earth









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.