. 24/7 Space News .
ENERGY TECH
Encapsulation as a method for preventing degradation in Li-air batteries
by Crystal Koe for MIT News
Boston MA (SPX) Jan 21, 2022

Two vials showing the start of the redox reaction on the left and the end of the reaction on the right.

Lithium-air batteries were thought promising in the 1970s as a potential power source for electric vehicles, offering energy densities that rival gasoline and significantly surpass conventional lithium-ion batteries. However, scientists over the last few decades have been unable to overcome challenges to practical application of this technology, including reversible charging and low cyclability that results in battery degradation over few uses.

A research team from MIT, Harvard University, and Cornell University has found a way to isolate and study one enigmatic molecule that may be responsible for the breakdown of key components in Li-air batteries - lithium superoxide.

"The key to trapping lithium superoxide is by using a confining shell of quinone-a molecule used as an energy carrier in biology," says Matthew Nava PhD '17, lead author of a paper on the work, published recently in PNAS. Nava, who is now a postdoc at Harvard University working in the laboratory of Patterson Rockwood Professor of Energy Daniel G. Nocera, contributed to the work as a researcher in the lab of Henry Dreyfus Professor of Chemistry Christopher Cummins, who is a senior author of the study; along with Shiyu Zhang from MIT; Katharine Pastore and Kyle Lancaster from Cornell University; and Xiaowen Feng and Daniel Nocera of Harvard.

Like many discoveries, this one began as an accident. While a graduate student in the Cummins group, Nava noticed that lithium peroxide turned blue when it got close to quinone, representing a rare color change of two reactant solids. Although they knew that the lithium superoxide intermediate should be present in this new material, it was difficult to prove, as the intermediate was buried in a shell of highly colored quinone, prone to detonation.

Lithium-air batteries operate by electron transfer from a high-surface-area cathode to oxygen gas during discharge, generating lithium peroxide deposits, the crucial storage material for this class of batteries. Lithium superoxide, formed during charging and discharging, is too unstable and short-lived at room temperature for scientists to reliably study; thus, being able to generate and stabilize this crucial intermediate is an important step toward developing a viable lithium-air battery.

"The limited cyclability [of li-air batteries] indicate that our understanding of the metal oxides that form the energy storage unit of these batteries is incomplete," says Nava. "This work demonstrates how encapsulation or physical confinement with specific materials might be a powerful method to prevent electrolyte and cell degradation in these batteries and increase cell cyclability."

As the world slowly transitions to renewable energy sources, problems of intermittency and the challenges of converting renewable energy into usable fuels need to be solved. Batteries may play a crucial role in the need for reliable and efficient energy storage, and this discovery may have provided a vital key to unlocking the way forward.

Research Report: "Lithium superoxide encapsulated in a benzoquinone anion matrix."


Related Links
MIT Department of Chemistry
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
Serbia backs out of controversial Rio Tinto lithium mine: PM
Belgrade (AFP) Jan 20, 2022
Serbian authorities have abandoned plans to build a controversial lithium mine, the prime minister said Thursday, following weeks of protests against the project set to be built by Rio Tinto. The surprise U-turn from the government comes months ahead of likely national elections with President Aleksandar Vucic's administration looking to shore up support from voters following a series of major protests that gained traction across large swaths of the Balkan country. "We have fulfilled all the d ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
NASA Solar Sail Mission to Chase Tiny Asteroid After Artemis I Launch

NASA Offers $1 Million for Innovative Systems to Feed Tomorrow's Astronauts

Crash test dummy

Russian cosmonauts conduct EVA to complete Nauka Lab Module integration to ISS

ENERGY TECH
SpaceX to crash Falcon 9 rocket into Moon

NASA prepares final rocket tests for first Artemis moon mission launch

Arianespace to launch Microcarb on Vega C

Rocket Lab readies first 2022 Electron Launch, BlackSky adds another mission to manifest

ENERGY TECH
Dust storm grounded Mars helicopter, but it's ready to fly again

Hope for present-day Martian groundwater dries up

Ejecting Mars' Pebbles

Sols 3362-3363: Sedimentologist's Delight

ENERGY TECH
China's rocket technology hits the ski slopes

China conducts its first rocket launch of 2022

Shouzhou XIII crew finishes cargo spacecraft, space station docking test

China to complete building of space station in 2022

ENERGY TECH
AGIS signs Kleos' data evaluation contract

GalaxySpace to establish space-based network

Liberty Strategic Capital to invest $150 Million in Satellogic and CF Acquisition Corp V

Palomar survey instrument analyzes impact of Starlink satellites

ENERGY TECH
Facebook trumpets massive new supercomputer

Rusting iron can be its own worst enemy

Now you don't see it and now you do

Using ice to boil water

ENERGY TECH
Scientists are a step closer to finding planets like Earth

TESS Science Office at MIT hits milestone of 5,000 exoplanet candidates

Ironing out the interiors of exoplanets

SETI's plan for a sky-monitoring telescope on the moon

ENERGY TECH
Oxygen ions in Jupiter's innermost radiation belts

Ocean Physics Explain Cyclones on Jupiter

Looking Back, Looking Forward To New Horizons

Testing radar to peer into Jupiter's moons









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.