. | . |
EnMAP is ready for science by Staff Writers Munich, Germany (SPX) Nov 03, 2022
Since its launch seven months ago, the German Environmental Mapping and Analysis Program (EnMAP) satellite has been busy collecting data. It has recorded more than 11.4 million square kilometres of Earth's surface flr-german-environmental-mapping-and-analysis-program-enmapan area larger than Europe flr-german-environmental-mapping-and-analysis-program-enmapfrom an altitude of approximately 650 kilometres, using its 242 spectral channels. But these data were not collected for scientific purposes. They were needed to set up the Hyperspectral Imager (HSI) instrument for scientific operation optimally and to check the quality of the acquired data. "During what is known as the commissioning phase, EnMAP has delivered first-class images of our planet in outstanding quality," says Walther Pelzer, DLR Executive Board member and head of the German Space Agency at DLR, which is leading the EnMAP mission on behalf of the German Federal Ministry for Economic Affairs and Climate Action (BMWK). "We are pleased to have successfully completed this test phase in October and are now entering routine operations. We can already look forward with great anticipation to what new, exciting scientific insights for the protection of our planet that we will gain from EnMAP data in the coming decades. One area that the EnMAP data will benefit is the sustainable improvement of agricultural yields that will ensure food security for a growing world population." During commissioning, the various components of the EnMAP satellite, including the HSI instrument, had to undergo various tests. During this delicate phase, the German Space Operations Center (GSOC) in Oberpfaffenhofen contributed to the successful completion of commissioning with its many years of experience and will continue to be available for routine operations and flr-german-environmental-mapping-and-analysis-program-enmapif necessary flr-german-environmental-mapping-and-analysis-program-enmapprovide around-the-clock support to ensure the safety of the satellite. The EnMAP data are received by DLR's German Remote Sensing Data Center (DFD) and Remote Sensing Technology Institute in Oberpfaffenhofen, which also calibrated the images during the commissioning phase, optimised them for the features of the instrument in orbit and, together with the GeoForschungszentrum Potsdam (GFZ), worked to continuously improve the data quality. The data that the satellite sends to Earth cannot be used directly. Only when they are further processed flr-german-environmental-mapping-and-analysis-program-enmapcalibrated, assigned positional data and corrected for atmospheric influences flr-german-environmental-mapping-and-analysis-program-enmapcan users draw quantitative and qualitative conclusions from the products. From now on, researchers worldwide can submit their requests to DLR. Archived data can be accessed immediately free of charge. A consortium led by the German Space Agency at DLR and GFZ will review the observation requests, which can include the areas of climate change impact, land cover change and surface processes, biodiversity and ecosystem, access to water and water quality, natural resources and disaster management. EnMAP will also provide important data on demand for the 'International Charter Space and Major Disasters' to provide immediate emergency support in the event of a disaster to support relief efforts worldwide. The German Space Agency at DLR places particular importance on the long-term monitoring of environmental change. Consequently, this area of research was given priority during the selection process of future observations beginning at the start of the mission's routine operations phase.
Towards more sustainable agriculture Using efficient algorithms and modern machine-learning techniques, researchers from the Department of Geography at Ludwig-Maximilians-Universitat Munchen (LMU) were able to quantify and map biophysical and biochemical plant properties over large areas for the first time. The growing world population and the simultaneous impact of agriculture on the environment, for example concerning the emission of greenhouse gases, are driving the demand for agricultural production. Against this backdrop, these new data could be used in agricultural management systems to improve resource efficiency and support the sustainability of the required yield optimisation.
Tracking down 'tell-tale' methane plumes with EnMAP The potential of the German environmental mission to map these methane plumes has already been confirmed by initial measurements made during the commissioning phase. On 6 October 2022, oil and gas production basins in the south of Turkmenistan were surveyed by EnMAP. Scientists from the Research Institute of Water and Environmental Engineering (IIAMA) of the Universitat Politecnica de Valencia have discovered several active methane point sources in this region using derived EnMAP maps showing the increase in methane concentrations.
Insights into the geology of the world's largest erosion crater Researchers are particularly interested in the geological units including sandstone, iron-oxide-rich rocks, gypsum, limestone, dolomite, clay minerals such as the phyllosilicate kaolinite, and plutonic crystalline rock units. The sandstone and the plutonic crystalline rock units that have 'migrated' to the surface are visible to the naked eye. But what is hidden underneath? How much rock and minerals are stored in the rock? And how are these units distributed? EnMAP helped researchers from the Remote Sensing Laboratory at Tel-Aviv University get to the bottom of these questions. The data from the satellite's commissioning phase, which was processed and provided by the DLR ground segment and processed together with the GFZ, gives a good foretaste of the high quality of the data we can expect during the operational phase. The researchers were able to distinguish very precisely between different rock types, such as dolomite and limestone, and minerals, such as clays and sulphates, as well as variations within mineral types within a strip of 40 by 7 kilometres. This offered a better picture of the quantity and distribution of mapped units compared to data acquired from the air and the ground. This knowledge would not have been possible without hyperspectral EnMAP images from space.
Monitoring water quality in Lake Constance from space These carpets grow particularly quickly where there are many nutrients, and the water warms up a lot. To get an overview of the excessive algae growth, EnMAP took a close look at Lake Constance and its chlorophyll-a concentration from space on 1 August 2022, during its commissioning phase. The data on this important plant pigment, evaluated by the Alfred Wegener Institute (AWI), provide information on photosynthesis and thus on algae growth. The data sets on the distribution and productivity of various phytoplankton groups acquired using the satellite are extremely valuable for monitoring the quality of inland waters and their use as a source of water and food, as well as a recreational area.
EnMAP flr-german-environmental-mapping-and-analysis-program-enmapthe German environmental mission and its partners Three DLR institutes and facilities have been commissioned for the construction and operation of the ground segment. The German Space Operations Center in Oberpfaffenhofen will conduct and monitor satellite operations, while the German Remote Sensing Data Center and the DLR Remote Sensing Technology Institute will archive, process and validate the received satellite data and make them available to the scientific community. Companies and public authorities will also test the data and use them to prepare future services. The use of EnMAP hyperspectral data by universities and scientific institutions and the development of special applications will be supported by BMWK funding programmes.
Geophysicist Leigh Royden looks at Earth from the top down Boston MA (SPX) Nov 03, 2022 The German Academy of Sciences Leopoldina has counted some of the greatest scientists in history among its ranks. Founded in 1652, and named in honor of the Holy Roman Emperor Leopold I, the scientific organization has included among its members Marie Curie, Albert Einstein, Alexander von Humboldt, and Charles Darwin, to name a few. But when Department of Earth, Atmospheric and Planetary Science (EAPS) professor Leigh "Wiki" Royden was elected to the Leopoldina, she was less impressed by its most ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |