. | . |
Emissions from complex organic molecules detected in comet by Staff Writers Tokyo, Japan (SPX) Nov 19, 2019
Using the Cooled Mid-Infrared Camera and Spectrometer (COMICS) on the Subaru Telescope, astronomers have detected an unidentified infrared emission band from comet 21P/Giacobini-Zinner (hereafter, comet 21P/G-Z) in addition to the thermal emissions from silicate and carbon grains. These unidentified infrared emissions are likely due to complex organic molecules, both aliphatic and aromatic hydrocarbons, contaminated by N- or O-atoms. Considering the properties of the dust and organic molecules, comet 21P/G-Z might have originated from the circumplanetary disk of a giant planet (like Jupiter or Saturn) where it was warmer than the typical comet-forming regions. Comet 21P/G-Z is a Jupiter-family comet with an orbital period of about 6.6 years and is thought to be the parent body of the October Draconids meteor shower. Compared to other comets, this comet is peculiar in terms of its volatile content (depleted in carbon-chain molecules, NH2, and highly volatile species) and the properties of its dust grains, and is categorized as "G-Z type" (~6% of surveyed comets). Based on previous studies, it was proposed that comet 21P/G-Z originated in a different region than other comets, but we didn't have any information about the specific region in the protoplanetary disk. A negative trend of linear polarization in the optical wavelength region is also reported for the dust continuum of comet 21P/G-Z. It is suggested that this negative wavelength gradient of polarization might be explained by a higher content of organic materials in the dust grains of 21P/G-Z. If complex organic molecules like amino acids are enriched in comet 21P/G-Z and in the meteoroids of the October Draconids, this meteor shower might have delivered complex organic materials to the ancient Earth. However, complex high-molecular-weight organic molecules have never been detected clearly in comets, except in comet 67P/Churyumov-Gerasimenko by the in-situ measurements of the Rosetta spacecraft. How much and how complex of organic molecules are contained in comet 21P/G-Z is still an open question. A team of astronomers from the Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Kyoto Sangyo University (KSU), National Astronomical Observatory of Japan (NAOJ), and Okayama University of Science (OUS) conducted mid-infrared spectroscopic and imaging observations of comet 21P/G-Z using COMICS on UT July 5, 2005 (when the comet was 1.04 au from the Sun, near its perihelion). The obtained spectrum of comet 21P/G-Z shows emission peaks of crystalline silicate grains, which are usually also seen in many other comets. In addition to these silicate features, the researchers found that the spectrum of comet 21P/G-Z exhibits unidentified infrared emission features, which could be attributed to a mixture of aliphatic and aromatic hydrocarbons (such as polycyclic aromatic hydrocarbons or hydrogenated amorphous carbons contaminated by N- or O-atoms). Comet 21P/G-Z is enriched in complex organic molecules. The enrichment of complex organic molecules requires a warm temperature or high energetic particle environment around the comet in the early solar nebula. The presence of these complex organic molecules suggests that comet 21P/G-Z originated from a warmer region in the protoplanetary disk than the typical comet-forming region. Considering that the derived mass fraction of crystalline silicates in comet 21P/G-Z is typical of comets, we propose that the comet originated from the circumplanetary disk of a giant planet (like Jupiter or Saturn) where it was warmer than the typical comet-forming region (5 to 30 au from the Sun) and was suitable for the formation of complex organic molecules. Comets from circumplanetary disks might be enriched in complex organic molecules, similar to comet 21P/G-Z, and may have provided pre-biotic molecules to ancient Earth by direct impact or meteor showers.
Research Report: "Unidentified Infrared Emission Features in Mid-infrared Spectrum of Comet 21P/Giacobini-Zinner"
Beyond Jupiter, Researchers Discover a 'Cradle of Comets' Tucson AZ (SPX) Oct 24, 2019 Comets are known to have a temper. As they swoop in from the outer edges of our solar system, these icy bodies begin spewing gas and dust as they venture closer to the Sun. Their luminous outbursts can result in spectacular sights that grace the night sky for days, weeks or even months. But comets aren't born that way, and their pathway from their original formation location toward the inner solar system has been debated for a long time. Comets are of great interest to planetary scientists because ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |