. | . |
Electrons squeezed into 'one-dimensional' wires yield quantum effects by Brooks Hays Cambridge, Mass. (UPI) Sep 15, 2016
Scientists have witnessed quantum effects in electrons after squeezing them into "one-dimensional" wires. Researchers created so-called "quantum wires" out of the semiconducting material gallium arsenide. The wires were used to bridge the gaps between 6,000 narrow strips of metal. Scientists manipulated the magnetic field and voltage to narrow the available pathways across the bridges. When the scientists squeezed the electrons onto the quantum wire bridges, they created a traffic jam -- triggering a wave-like quantum effect. Researcher Christopher Ford likened this wave-like passage of subatomic information to the physics of an overcrowded trolley car. "If someone tries to get in a door, they have to push the people closest to them along a bit to make room," Ford, a researcher at the University of Cambridge's Cavendish Laboratory, explained in a news release. "In turn, those people push slightly on their neighbors, and so on." "A wave of compression passes down the carriage, at some speed related to how people interact with their neighbors, and that speed probably depends on how hard they were shoved by the person getting on the train," Ford continued. "By measuring this speed, one could learn about the interactions." But electrons don't just have directional momentum, they also have spin. Scientists were able to design the quantum wire to carry the energy of these quantum spin waves -- in addition to their charge waves. Scientists have devised a variety of theoretical ideas about how quantum spin waves are passed across a chain of electrons. The latest research allowed scientists to test their theories. Their tests confirmed predictions that different interactions between quantum-mechanical particles would produce a hierarchy of different spin wave "modes" -- some stronger than others. The tests also confirmed the prediction that the strongest spin waves would be measured across the shortest quantum wires. Researchers believe their findings -- detailed in the journal Nature Communications -- will help scientists better understand the behavior of quantum-mechanical particles, and allow physicists to better control electrons in quantum computers.
Related Links Understanding Time and Space
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |