. 24/7 Space News .
TIME AND SPACE
Electron family creates previously unknown state of matter
by Staff Writers
Dresden, Germany (SPX) Nov 08, 2021

A four-part electron family creates a completely new state of matter in a metal. Researchers from the Dresden-Wurzburg Cluster of Excellence ct.qmat have demonstrated this unusual phenomenon for the first time worldwide.

Dissipationless electric energy transport-also known as superconductivity-is seen as a beacon of hope for the energy industry. Since its discovery more than 100 years ago, scientists around the world have been investigating this well-known quantum phenomenon, which, however, requires the electrons in metals to be cooled to ultra-low temperatures.

A team of scientists from the Cluster of Excellence ct.qmat-Complexity and Topology in Quantum Matter at the Universities of Dresden and Wurzburg has now made a remarkable discovery: In certain superconducting metals, a compound of four electrons ensures that a completely new state of matter is created. Until now, only electron pairs were known to play a role in superconductivity.

The discovery by the research team led by Prof. Hans-Henning Klauss of Technische Universitat Dresden is therefore considered a milestone for materials research. The research results have been published in the journal Nature Physics.

Electron family surprises researchers
In quantum physics, superconductivity, discovered as early as in 1911, is probably the best-known phenomenon to date. Its theoretical foundations are understood since the 1950s. It is essential that electrons at ultra-low temperatures no longer move through a metal individually, but as pairs. Electron pairs do not collide with the atomic lattice, so that they can transport their charge without any loss of energy.

When the Dresden researchers led by Henning Klauss experimentally investigated the superconducting metal Ba1-xKxFe2As2 from the class of iron pnictides, they initially suspected a mistake: "When we discovered that suddenly four electrons instead of two were forming a bond, we first believed it was a measurement error.

"But the more methods we used to confirm the result, the clearer it became that this had to be a new phenomenon: all data are consistent with the same result. Now we know that the four particle electron family in certain metals creates a completely new state of matter when cooled to ultra-low temperatures. What this will lead to in the future will become clear over the next few years," comments Dresden physicist Hans-Henning Klauss.

Results tested for more than two years
Already about ten years ago, it was theoretically predicted that there could be an unusual state of matter in certain superconducting metals, in which four instead of two electrons play a role. The international research team of the Cluster of Excellence ct.qmat has now provided the first experimental evidence. It was scrutinized for two years using seven different methods.

"We first discovered the new state of matter in a Swiss particle accelerator. We were then able to confirm our results with six other methods on site in Dresden and at Stockholm University. The great location advantage of Dresden is the short distances: I can bring my sample almost on foot to a Leibniz Institute or Helmholz Center," emphasizes the project's lead experimenter, Dr. Vadim Grinenko of TU Dresden. The theoretical interpretation of the measurement results comes from the Swedish physicist Prof. Egor Babaev.

New type of superconductivity possible
The discovery of iron pnictides as a class of materials particularly suitable for superconductivity already triggered a worldwide research boom in physics and materials science starting in 2008. The energy industry has high hopes for the popular quantum phenomenon because up to 15 percent of energy is lost in conventional energy transport due to transport resistance.

"If you could actually transport electricity across the country in superconducting metals at room temperature, about ten large power plants would be superfluous right away," says Klauss. However, basic research-such as Prof. Klauss'-is concerned with understanding the underlying physics and can at best speculate about future applications.

"One can assume that our results will lead to a whole new line of research, looking for other metals with four connected electrons, for example, or exploring how materials need to be changed to create an electron family," Klauss explains. "In purely theoretical terms, a whole new type of superconductivity would also be possible with our electron family. The only thing that is certain is that iron pnictides are well suited for technologies such as quantum sensors due to their new aggregate state."

Research Report: "State with spontaneously broken time-reversal symmetry above the superconducting phase transition, Grinenko et al"


Related Links
Dresden University of Technology
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
New results from MicroBooNE provide clues to particle physics mystery
Los Alamos NM (SPX) Nov 03, 2021
New results from a more-than-decade long physics experiment offer insight into unexplained electron-like events found in previous experiments. Results of the MicroBooNE experiment, while not confirming the existence of a proposed new particle, the sterile neutrino, provide a path forward to explore physics beyond the Standard Model, the theory of the fundamental forces of nature and elementary particles. "The results so far from MicroBooNE make the explanation for the MiniBooNE experiment's anomal ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
High winds delay ISS astronauts' return to Earth

Astronauts to return from space station next week: NASA

New roles, combined offices for NASA Administrator Leadership Team

NASA, SpaceX delay ISS mission again for medical issue

TIME AND SPACE
Hypersonix to use Siemens' software in design of its hydrogen fuelled launchers

NASA prepares to fuel James Webb telescope for Dec. 18 launch

Major Artemis engine part arrives at Stennis for certification testing

NASA, SpaceX reschedule Crew-3 launch due to weather

TIME AND SPACE
Flight #15 - Start of the Return Journey

UNI Bremen involved in AMADEE-20 Mars Simulation

New Curtin study pinpoints likely home of Martian meteorites

Sol 3285: Oh So Close

TIME AND SPACE
Shenzhou XIII crew ready for first spacewalk

Chinese astronauts arrive at space station for longest mission

China's longest-yet crewed space mission impressive, expert says

Chinese astronaut bridges gender gap

TIME AND SPACE
SpaceFund Invests in Rhea Space Activity

Geraldine Naja, Director of Commercialisation, Industry and Procurement

Amazon to launch two Project Kuiper satellites next fall

NEOM Tech and Digital Holding Company and OneWeb sign $200m JV for satellite network

TIME AND SPACE
Indian star Kamal Haasan to launch metaverse avatar

Healable carbon fiber composite offers path to long-lasting, sustainable materials

Securing data transfers with relativity

An artificial material that can sense, adapt to its environment

TIME AND SPACE
To find life on other planets, NASA rocket team looks to the stars

Rocky Exoplanets Are Even Stranger Than We Thought

Key role of the reactor surface in Miller's experiment on the molecular origin of life

Building planets from protoplanetary disks

TIME AND SPACE
Science results offer first 3D view of Jupiter's atmosphere

Juno peers deep into Jupiter's colorful belts and zones

Scientists find strange black 'superionic ice' that could exist inside other planets

Jupiter's Great Red Spot is deeper than thought, shaped like lens









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.