. | . |
Electron-Eating Neon Causes Star to Collapse by Staff Writers Kashiwa, Japan (SPX) Mar 31, 2020
An international team of researchers has found that neon inside a certain massive star can eat so many electrons in the core, a process called electron capture, which causes the star to collapse into a neutron star and produce a supernova. The researchers were interested in studying the final fate of stars within a mass range of 8 to 10 solar masses, or 8 to 10 times the mass of our Sun. This mass range is important because it includes the boundary between whether a star has a large enough mass to undergo a supernova explosion to form a neutron star, or has a smaller mass to form a white dwarf star without becoming a supernova. An 8 to 10 solar mass star commonly forms a core composed of oxygen, magnesium, and neon. The core is rich in degenerate-electrons, meaning there is an abundance of electrons in a dense space, whose energy is high enough to sustain the core against gravity. Once the core density is high enough, the electrons get eaten by magnesium and then neon, which also is found inside the core. Past studies have confirmed that magnesium and neon can start eating away at the electrons once the mass of the core has grown close to a Chandrasekhar's limiting mass, a process called electron capture, but there has been debate about whether electron capture can cause neutron star formation. A team of researchers including Chinese University of Hong Kong PhD candidate Shuai Zha (frequent visitor to the Kavli Institute for the Physics and Mathematics of the Universe, Kavli IPMU, and currently a postdoctoral fellow at Stockholm University), Kavli IPMU WPI postdoctoral fellow Shing-Chi Leung (currently a postdoctoral fellow at Caltech), Nihon University Professor Toshio Suzuki, and Kavli IPMU Senior Scientist Ken'ichi Nomoto studied the evolution of an 8.4 solar mass star and ran computer simulations on it to find an answer. Using newly updated data by Suzuki for density-dependent and temperature-dependent electron capture rates, they simulated the evolution of the star's core, which is supported by the pressure of degenerate electrons against the star's own gravity. As magnesium and mainly neon eat the electrons, the number of electrons decreased and the core rapidly shrunk. The electron capture also released heat. When the central density of the core exceeded 10 billion grams per cubic centimeter, oxygen in the core started to burn materials in the central region of the core, turning them into iron group nuclei such as iron and nickel. The temperature became so hot that protons became free and escaped. Now, the electrons became easier to be captured by free protons and iron group nuclei, and the density was so high that the core collapsed without producing a thermonuclear explosion. With the new electron capture rates, oxygen burning was found to take place slightly off-center. Nevertheless, the collapse formed a neutron star and caused a supernova explosion, showing that an electron capture supernova takes place. Note a certain mass range of stars with 8 to 10 solar masses would form white dwarfs composed of oxygen-magnesium-neon by losing envelope due to stellar wind mass loss. If the wind mass loss is small, on the other hand, the star undergoes the electron capture supernova as found in their simulation. The team suggests that the electron capture supernova could explain the properties of the supernova recorded in 1054 that formed the Crab Nebula, as proposed by Nomoto et al. (1982 Nature).
Research Report: "Evolution of ONeMg Core in Super-AGB Stars Toward Electron-Capture Supernovae: Effects of Updated Electron-Capture Rate"
Shining light on sleeping cataclysmic binaries New York NY (SPX) Mar 25, 2020 Almost 35 years ago, scientists made the then-radical proposal that colossal hydrogen bombs called novae go through a very long-term life cycle after erupting, fading to obscurity for hundreds of thousands of years and then building back up to become full-fledged novae once more. A new study is the first to fully model the work and incorporate all of the feedback factors now known to control these systems, backing up the original prediction while bringing new details to light. Published this week ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |