. | . |
Ecologists confirm Alan Turing's theory for Australian fairy circles by Staff Writers Gottingen, Germany (SPX) Sep 23, 2020
Fairy circles are one of nature's greatest enigmas and most visually stunning phenomena. An international research team led by the University of Gottingen has now, for the first time, collected detailed data to show that Alan Turing's model explains the striking vegetation patterns of the Australian fairy circles. In addition, the researchers showed that the grasses that make up these patterns act as "eco-engineers" to modify their own hostile and arid environment, thus keeping the ecosystem functioning. The results were published in the Journal of Ecology. Researchers from Germany, Australia and Israel undertook an in-depth fieldwork study in the remote Outback of Western Australia. They used drone technology, spatial statistics, quadrat-based field mapping, and continuous data-recording from a field-weather station. With the drone and a multispectral camera, the researchers mapped the "vitality status" of the Triodia grasses (how strong and how well they grew) in five one-hectare plots and classified them into high- and low-vitality. The systematic and detailed fieldwork enabled, for the first time in such an ecosystem, a comprehensive test of the "Turing pattern" theory. Turing's concept was that in certain systems, due to random disturbances and a "reaction-diffusion" mechanism, interaction between just two diffusible substances was enough to allow strongly patterned structures to spontaneously emerge. Physicists have used this model to explain the striking skin patterns in zebrafish or leopards for instance. Earlier modelling had suggested this theory might apply to these intriguing vegetation patterns and now there is robust data from multiple scales which confirms that Alan Turing's model applies to Australian fairy circles. The data show that the unique gap pattern of the Australian fairy circles, which occur only in a small area east of the town of Newman, emerges from ecohydrological biomass-water feedbacks from the grasses. In fact, the fairy circles - with their large diameters of 4m, clay crusts from weathering and resultant water run-off - are a critical extra source of water for the dryland vegetation. Clumps of grasses increased shading and water infiltration around the nearby roots. With increasing years after fire, they merged more and more at the periphery of the vegetation gaps to form a barrier so that they could maximize their water uptake from the fairy circle's runoff. The protective plant cover of grasses could reduce soil-s�urface temperatures by about 25C at the hottest time of the day, which facilitates the germination and growth of new grasses. In summary, the scientists found evidence both at the scale of the landscape and at much smaller scales that the grasses, with their cooperative growth dynamics, redistribute the water resources, modulate the physical environment, and thus function as "ecosystem engineers" to modify their own environment and better cope with the arid conditions. Dr Stephan Getzin, Department of Ecosystem Modelling at the University of Gottingen, explains, "The intriguing thing is that the grasses are actively engineering their own environment by forming symmetrically spaced gap patterns. The vegetation benefits from the additional runoff water provided by the large fairy circles, and so keeps the arid ecosystem functional even in very harsh, dry conditions." This contrasts with the uniform vegetation cover seen in less water-stressed environments. "Without the self-organization of the grasses, this area would likely become desert, dominated by bare soil," he adds. The emergence of Turing-like patterned vegetation seems to be nature's way of managing an ancient deficit of permanent water shortage. In 1952 when the British mathematician, Alan Turing, published his ground-breaking theoretical paper on pattern formation, he had most likely never heard of the fairy circles before. But with his theory he laid the foundation for generations of physicists to explain highly symmetrical patterns like sand ripples in dunes, cloud stripes in the sky or spots on an animal's coat with the reaction-diffusion mechanism. Now, ecologists have provided an empirical study to extend this principle from physics to dryland ecosystems with fairy circles.
Research Report: "Australian fairy circles regenerate following model assumptions on ecohydrological feedbacks"
Why there is no speed limit in the superfluid universe Lancaster UK (SPX) Sep 22, 2020 Physicists from Lancaster University have established why objects moving through superfluid helium-3 lack a speed limit in a continuation of earlier Lancaster research. Helium-3 is a rare isotope of helium, in which one neutron is missing. It becomes superfluid at extremely low temperatures, enabling unusual properties such as a lack of friction for moving objects. It was thought that the speed of objects moving through superfluid helium-3 was fundamentally limited to the critical Landau v ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |