. 24/7 Space News .
EARLY EARTH
Earliest life may have arisen in ponds, not oceans
by Jennifer Chu, MIT News Office
Boston MA (SPX) Apr 15, 2019

file image only

Primitive ponds may have provided a suitable environment for brewing up Earth's first life forms, more so than oceans, a new MIT study finds.

Researchers report that shallow bodies of water, on the order of 10 centimeters deep, could have held high concentrations of what many scientists believe to be a key ingredient for jump-starting life on Earth: nitrogen.

In shallow ponds, nitrogen, in the form of nitrogenous oxides, would have had a good chance of accumulating enough to react with other compounds and give rise to the first living organisms. In much deeper oceans, nitrogen would have had a harder time establishing a significant, life-catalyzing presence, the researchers say.

"Our overall message is, if you think the origin of life required fixed nitrogen, as many people do, then it's tough to have the origin of life happen in the ocean," says lead author Sukrit Ranjan, a postdoc in MIT's Department of Earth, Atmospheric and Planetary Sciences (EAPS). "It's much easier to have that happen in a pond."

Ranjan and his colleagues have published their results in the journal Geochemistry, Geophysics, Geosystems. The paper's co-authors are Andrew Babbin, the Doherty Assistant Professor in Ocean Utilization in EAPS, along with Zoe Todd and Dimitar Sasselov of Harvard University, and Paul Rimmer at Cambridge University.

Breaking a bond
If primitive life indeed sprang from a key reaction involving nitrogen, there are two ways in which scientists believe this could have happened. The first hypothesis involves the deep ocean, where nitrogen, in the form of nitrogenous oxides, could have reacted with carbon dioxide bubbling forth from hydrothermal vents, to form life's first molecular building blocks.

The second nitrogen-based hypothesis for the origin of life involves RNA - ribonucleic acid, a molecule that today helps encode our genetic information. In its primitive form, RNA was likely a free-floating molecule. When in contact with nitrogenous oxides, some scientists believe, RNA could have been chemically induced to form the first molecular chains of life. This process of RNA formation could have occurred in either the oceans or in shallow lakes and ponds.

Nitrogenous oxides were likely deposited in bodies of water, including oceans and ponds, as remnants of the breakdown of nitrogen in Earth's atmosphere. Atmospheric nitrogen consists of two nitrogen molecules, linked via a strong triple bond, that can only be broken by an extremely energetic event - namely, lightning.

"Lightning is like a really intense bomb going off," Ranjan says. "It produces enough energy that it breaks that triple bond in our atmospheric nitrogen gas, to produce nitrogenous oxides that can then rain down into water bodies."

Scientists believe that there could have been enough lightning crackling through the early atmosphere to produce an abundance of nitrogenous oxides to fuel the origin of life in the ocean. Ranjan says scientists have assumed that this supply of lightning-generated nitrogenous oxides was relatively stable once the compounds entered the oceans.

However, in this new study, he identifies two significant "sinks," or effects that could have destroyed a significant portion of nitrogenous oxides, particularly in the oceans. He and his colleagues looked through the scientific literature and found that nitrogenous oxides in water can be broken down via interactions with the sun's ultraviolet light, and also with dissolved iron sloughed off from primitive oceanic rocks.

Ranjan says both ultraviolet light and dissolved iron could have destroyed a significant portion of nitrogenous oxides in the ocean, sending the compounds back into the atmosphere as gaseous nitrogen.

"We showed that if you include these two new sinks that people hadn't thought about before, that suppresses the concentrations of nitrogenous oxides in the ocean by a factor of 1,000, relative to what people calculated before," Ranjan says.

"Building a cathedral"
In the ocean, ultraviolet light and dissolved iron would have made nitrogenous oxides far less available for synthesizing living organisms. In shallow ponds, however, life would have had a better chance to take hold. That's mainly because ponds have much less volume over which compounds can be diluted. As a result, nitrogenous oxides would have built up to much higher concentrations in ponds. Any "sinks," such as UV light and dissolved iron, would have had less of an effect on the compound's overall concentrations.

Ranjan says the more shallow the pond, the greater the chance nitrogenous oxides would have had to interact with other molecules, and particularly RNA, to catalyze the first living organisms.

"These ponds could have been from 10 to 100 centimeters deep, with a surface area of tens of square meters or larger," Ranjan says. "They would have been similar to Don Juan Pond in Antarctica today, which has a summer seasonal depth of about 10 centimeters."

That may not seem like a significant body of water, but he says that's precisely the point: In environments any deeper or larger, nitrogenous oxides would simply have been too diluted, precluding any participation in origin-of-life chemistry. Other groups have estimated that, around 3.9 billion years ago, just before the first signs of life appeared on Earth, there may have been about 500 square kilometers of shallow ponds and lakes worldwide.

"That's utterly tiny, compared to the amount of lake area we have today," Ranjan says. "However, relative to the amount of surface area prebiotic chemists postulate is required to get life started, it's quite adequate."

The debate over whether life originated in ponds versus oceans is not quite resolved, but Ranjan says the new study provides one convincing piece of evidence for the former.

"This discipline is less like knocking over a row of dominos, and more like building a cathedral," Ranjan says. "There's no real 'aha' moment. It's more like building up patiently one observation after another, and the picture that's emerging is that overall, many prebiotic synthesis pathways seem to be chemically easier in ponds than oceans."


Related Links
Massachusetts Institute of Technology
Explore The Early Earth at TerraDaily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARLY EARTH
Fossil fly with an extremely long proboscis sheds light on the insect pollination origin
Moscow, Russia (SPX) Apr 03, 2019
A long-nosed fly from the Jurassic of Central Asia, reported by Russian paleontologists, provides new evidence that insects have started serving as pollinators long before the emergence of flowering plants. Equipped with a proboscis twice the length of the body, this fly predates the first angiosperms by about 40-45 million years. This suggests that insect pollination began to evolve in association with ancient gymnosperms.The results of the study are published in Gondwana Research. Archocyrtus ko ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARLY EARTH
Spinoff Book Highlights NASA Technology Everywhere

Three prototypes in space settlement challenge receive UAE support

Counting the Many Ways the International Space Station Benefits Humanity

NASA highlights science on next Cygnus mission to ISS

EARLY EARTH
Northrop Grumman completes 2nd test of rocket motor for ULA Atlas V

NASA Achieves Rocket Engine Test Milestone Needed for Moon Missions

US Planning Five Hypersonic Test Programs in Marshall Islands

First 2019 Proton-M Rocket Launch From Baikonur Slated for May

EARLY EARTH
British instruments help reveal secrets of Mars atmosphere

Martian soil detox could lead to new medicines

NASA's MAVEN Uses Red Planet's Atmosphere to Change Orbit

Life on Mars?

EARLY EARTH
China's commercial carrier rocket finishes engine test

China launches new data relay satellite

Super-powerful Long March 9 said to begin missions around 2030

China preparing for space station missions

EARLY EARTH
Forging the future

Preserving heritage data at ESA

Amazon working on internet-serving satellite network

ESA and DLR in joint study to support deep space missions

EARLY EARTH
Study shows potential for Earth-friendly plastic replacement

NASA awards contract to Auburn University's National Center for Additive Manufacturing Excellence

China's virtual reality arcades aim for real-world success

Maxar and NASA complete Design Review for Restore-L On-Orbit Servicing Spacecraft Bus

EARLY EARTH
Biologists find world's first organism with non-photosynthesizing chlorophyll

Life Could Be Evolving Right Now on Nearest Exoplanets

NASA researchers catalogue all microbes and fungi on ISS

Building blocks of DNA and RNA could have appeared together before life began on Earth

EARLY EARTH
Europa Clipper High-Gain Antenna Undergoes Testing

Scientists to Conduct Largest-Ever Hubble Survey of the Kuiper Belt

Jupiter's unknown journey revealed

A Prehistoric Mystery in the Kuiper Belt









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.