. | . |
Dutch Japanese Instrument Measures 49 Shades of Far-Infared by Staff Writers Amsterdam, The Netherlands (SPX) Aug 07, 2019
The Dutch-Japanese made DESHIMA instrument has passed its first practical tests when measuring the distances and ages of distant galaxies. The core of the instrument is a chip the size of two euro coins that measures 49 shades of far infrared light. The developers of the spectrometer publish the results of their first measurement campaign (first light) on Monday in the journal Nature Astronomy. Measuring distances and ages in the universe is a problem. The brightness of a star or a galaxy says little about age. Astronomers bypass this problem by measuring the Doppler effect of light from galaxies. The redder the light, the higher the speed, the farther the galaxy. Unfortunately, the redshift of many galaxies in the early universe cannot be measured with visible light, because starlight is shaded by dust clouds surrounding these galaxies. Measuring the redshift of these galaxies requires observing in far infrared.
49 Channels The chip contains one antenna, 49 filters and 49 detectors. The antenna captures radiation of various wavelengths. The filters unravel the radiation in 49 tones of infrared. The 49 detectors measure the intensity of the radiation. When a detector picks up a signal, it can be seen as a peak in a graph.
First Light
Space Telescope In addition, the researchers want to link multiple chips so that they can study multiple galaxies at the same time. The development must lead to a handy-sized imaging spectrometer that is easy to use on a ground-based telescope and is a must for use with space telescopes.
Help from Jeweler After searching for hours in the town of San Pedro de Atacama, the researchers came to jeweler Jose Pinto. In Pinto's toolbox, they found a piece of copper wire with exactly the right diameter. With that they could make the forgotten pins. And so the instrument was rescued and the tests could start.
Research Report: "First Light Demonstration of the Integrated Superconducting Spectrometer"
Research Report: "Wideband On-Chip Terahertz Spectrometer Based on a Superconducting Filter Bank"
NASA's new lightweight x-ray mirrors ready for try-outs in space Greenbelt MD (SPX) Jul 30, 2019 Recent testing has shown that super-thin, lightweight X-ray mirrors made of a material commonly used to make computer chips can meet the stringent imaging requirements of next-generation X-ray observatories. As a result, the X-ray mirror technology being developed by Will Zhang and his team at NASA's Goddard Space Flight Center in Greenbelt, Maryland, has been baselined for the Design Reference Mission of the conceptual Lynx X-ray Observatory - one of four potential missions that scientists have v ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |