. 24/7 Space News .
CLIMATE SCIENCE
Droughts could hit aging power plants hard
by Staff Writers
Durham NC (SPX) Mar 28, 2019

Future droughts could undercut the generating capacity of older U.S. thermoelectric power plants that have 'once-through' cooling systems, a new Duke University study finds.

Older power plants with once-through cooling systems generate about a third of all U.S. electricity, but their future generating capacity will be undercut by droughts and rising water temperatures linked to climate change. These impacts would be exacerbated by environmental regulations that limit water use.

The solution is not to scrap the regulations, a new Duke University study shows. It's to scrap the old cooling systems.

"If we want to have reliable electricity and, at the same time, protect the lakes and rivers that provide cooling water to the plants, we need to retrofit the plants with recirculating cooling systems," said Lincoln F. Pratson, Gendell Family Professor of Energy and the Environment at Duke's Nicholas School of the Environment.

The new study shows that if surface waters warm 3 degrees Centigrade and river flows drop 20 percent - both of which are probable by the end of the century - drought-related impacts will account for about 20 percent of all capacity reductions at thermoelectric power plants with once-through, or open-loop, cooling systems. These reductions include capacity curtailments or shutdowns that could occur when local surface water levels drop at a plant's intake structures.

Environmental regulations that govern a plant's water use and the maximum temperature of used cooling water it can discharge back into rivers or lakes will account for much of the remaining 80 percent of future shutdowns and capacity cuts, Pratson said.

"It's surprising that the impacts of drought will be so much larger than those of warmer temperatures, which we estimate will account for little more than 2 percent of reductions," said Candise L. Henry, a 2018 PhD graduate of Duke's Nicholas School, who led the study as part of her doctoral dissertation. "But it's also surprising that drought impacts will be so much smaller than regulatory impacts."

"Fortunately, nearly all of these impacts could be mitigated by switching to recirculating cooling systems," Henry said.

Thermoelectric power plants use steam-driven turbines to generate their energy. Once the steam has passed through the turbines it must be cooled down. Once-through systems do this by drawing in cold water from nearby rivers or lakes, circulating it through pipes to absorb the steam's heat, and discharging the heated water back into the river or lake.

In recirculating systems, water from a cooling tower is used to absorb the steam's heat and then routed back to the tower where the heat is released through evaporation. Plants with this type of system don't discharge heated water to surface waters and only have to replace the portion of their cooling water supply that is lost through evaporation, making them less vulnerable to drought impacts and environmental regulations.

"Right now, it's fairly common for plants to be granted provisional exemptions from rules governing the maximum allowable temperature of discharged water, but if regulations become more stringent under future administrations, we could see more curtailments or shutdowns of once-through power plants," said Henry, who is now a postdoctoral researcher at the Carnegie Institution for Science at Stanford University.

She and Pratson published their peer-reviewed findings March 8 in Environmental Science and Technology.

To conduct their study, they analyzed seven years of operational and meteorological data for 52 eastern U.S. power plants with once-through cooling systems. Using an electricity generation model, they combed the data - which spanned the years 2007 to 2014, when severe droughts affected much of the Southeast - to track how hourly changes in local water temperatures and flow rates affected each plant's maximum power output.

By running the model under seven different water-availability and temperature scenarios, they were able to tease apart what percentage of the total changes in generating capacity was caused by rising water temperatures, what portion stemmed from decreased water flow, and how much was linked to regulatory compliance. Using projected warming and water flow trends for the coming century, they estimated the likely future impacts of each factor.

"Past studies bundled the impacts of drought, water temperatures and environmental regulation together," Pratson noted. "By pulling them apart, we gain a much clearer picture of what the big threats will be and what we can do to mitigate them."

The fact that drought impacts will be so much larger than those caused by warmer water underscores the need to prioritize mitigation strategies that focus on water flow, he said. In addition to installing recirculating cooling systems, these strategies include installing ponds to hold cooling water reserves; locating new plants on larger bodies of water; and implementing more stringent watershed management plans to regulate water use by all users located on a river or lake.

"Differentiating the Effects of Climate Change-Induced Temperature and Streamflow Changes on the Vulnerability of Once-Through Research Report: Thermoelectric Power Plants"


Related Links
Duke University
Climate Science News - Modeling, Mitigation Adaptation


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CLIMATE SCIENCE
Stalagmite to help predict droughts, floods in India
Washington (UPI) Mar 25, 2019
Analysis of a stalagmite in one of the rainiest places on the planet has revealed an unexpected link between winter precipitation totals in northeast India and climatic conditions in the Pacific. Roughly 1.5 billion people in India rely on the monsoons for their water. Sometimes, the monsoons disappoint. Winter rains can alleviate drought conditions in the wake of a weak monsoon season. Conversely, especially intense monsoons can trigger deadly flooding. To better understand the region's ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CLIMATE SCIENCE
ESA studies water in space

Spacewalkers Complete Battery Swaps for Station Power Upgrades

The time to apply to space for humanity is now!

NASA schedules its first women-only spacewalk

CLIMATE SCIENCE
SLS engine section approaches finish line for first flight

Arianespace orbits 600th satellite, the PRISMA EO satellite for Italy

Rocket Crafters pivots with new patents for 3D-printed fuel

Ariane 6 maiden flight will deploy satellites for OneWeb, additional launches booked

CLIMATE SCIENCE
Laser blasts show asteroid bombardment, hydrogen make great recipe for life on Mars

Google and Haughton-Mars Project Partner on Moon-Mars Exploration Prep

ExoMars landing platform arrives in Europe with a name

NASA's Mars 2020 rover is put to the test

CLIMATE SCIENCE
Super-powerful Long March 9 said to begin missions around 2030

China preparing for space station missions

China's lunar rover studies stones on moon's far side

China improves Long March-6 rocket for growing commercial launches

CLIMATE SCIENCE
Inmarsat agrees to $3.4 bn takeover from consortium

OneWeb starts to mass-produce satellites in Florida

UAE announces pan-Arab body for space programme

Lockheed Martin develops world-first LTE-Over-Satellite System

CLIMATE SCIENCE
Raytheon to update Advanced Synthentic Aperture Radar for U-2 Dragon Lady

At the limits of detectability

Raytheon tests EASR all-purpose surveillance radar for U.S. Navy

Air Force, education and industry partners work together to gather space radiation data

CLIMATE SCIENCE
Icy giant planets in the laboratory

Neural Networks Predict Planet Mass

Astrobiology seminar aims to inspire a look into the bounds of life

Carbon monoxide detectors could warn of extraterrestrial life

CLIMATE SCIENCE
Jupiter's unknown journey revealed

A Prehistoric Mystery in the Kuiper Belt

Ultima Thule in 3D

SwRI-led New Horizons research indicates small Kuiper Belt objects are surprisingly rare









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.