24/7 Space News
CHIP TECH
Dongguk University creates stretchable gel nanogenerators for wearable tech
illustration only
Dongguk University creates stretchable gel nanogenerators for wearable tech
by Riko Seibo
Tokyo, Japan (SPX) Dec 10, 2024

Imagine a world where wearable devices seamlessly integrate into clothing, powering gadgets and offering secure user interactions. Researchers at Dongguk University have unveiled a gel polymer-based triboelectric nanogenerator (GPE-TENG) capable of converting body movement into electrical energy. This innovation not only powers devices like LEDs but also functions as a self-powered touch panel for biometric recognition, showcasing a significant leap in wearable technology.

The newly developed GPE-TENG is stretchable up to 375% of its original size and remains highly durable, even under intense mechanical stress. This makes it ideal for applications such as smartwatches, fitness trackers, and medical sensors, which require flexibility to adapt to human movement. Triboelectric nanogenerators (TENGs) like this one harness mechanical energy-such as motion or touch-into electricity, providing a sustainable alternative to batteries for wearables.

Addressing Flexibility Challenges in Wearables

Traditional TENGs often rely on rigid triboelectric materials that limit adaptability in wearable designs. To overcome these constraints, Professor Jung Inn Sohn and his team at Dongguk University developed a gel polymer electrode-based solution. The GPE-TENG combines polyethylene oxide (PEO) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) gel with ecoflex layers, creating a device that is both semi-transparent and highly flexible.

"We report an in-situ curing strategy to develop a stretchable, semi-transparent, and durable GPE-TENG through enhanced interfacial bonding between the ionic polymer gel and ecoflex layers," explained Prof. Sohn.

The fabrication process involves pouring the gel mixture into an ecoflex mold, spreading it evenly, and covering it with an additional ecoflex layer. After attaching a copper wire for electrical connections, the device is cured at 70 C for 12 hours to ensure a strong bond between the components.

Unprecedented Durability and Performance

The GPE-TENG generates electrical signals when stretched or tapped, achieving a peak power output of 0.36 W/m under a load of 15 MO. Rigorous testing demonstrated its resilience, withstanding two months of continuous bending, twisting, folding, and stretching without performance degradation or structural delamination.

With its impressive durability and energy-generating capabilities, the GPE-TENG can support diverse applications. For instance, it could serve as a rehabilitation tool to track joint movements or as a secure biometric system integrated into clothing to unlock doors and lockers.

"This work could revolutionize wearable technology by developing sustainable and flexible electronic devices with promising applications in human healthcare, rehabilitation, security systems, and secure biometric authentication systems," said Prof. Sohn.

Research Report:In-situ cured gel polymer/ecoflex hierarchical structure-based stretchable and robust TENG for intelligent touch perception and biometric recognition

Related Links
Dongguk University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
CHIP TECH
Photonic processor could enable ultrafast AI computations with extreme energy efficiency
Boston MA (SPX) Dec 08, 2024
The deep neural network models that power today's most demanding machine-learning applications have grown so large and complex that they are pushing the limits of traditional electronic computing hardware. Photonic hardware, which can perform machine-learning computations with light, offers a faster and more energy-efficient alternative. However, there are some types of neural network computations that a photonic device can't perform, requiring the use of off-chip electronics or other techniques t ... read more

CHIP TECH
ISS crew members prepare space botany study and pack Dragon capsule for return

McGill Professor leads AXIS mission in final phase of NASA selection process

NASA Voyager 1 returns to full operations after communication issue

Slingshot Aerospace secures $13M NOAA contract for Space Traffic Platform Interface

CHIP TECH
SpaceX reaches milestone with 300th successful booster landing

ESA launches spacecraft that will eventually create artificial solar eclipse

Europe's troubled Vega-C rocket launches after delays

Vega-C set for launch marking its return to service

CHIP TECH
China's Tianwen-1 probe reveals new insights into Martian internal gravity waves

Mars Ocean Analogs Completes Winter Solstice Voyage and Plans Future Expeditions

China aims to return Mars samples to Earth by 2031

Scientists map complete energy spectrum of solar high-energy protons near Mars

CHIP TECH
Long March 12 set for inaugural launch from Hainan space center

China inflatable space capsule aces orbital test

Tianzhou 7 completes cargo Mission, Tianzhou 8 docks with Tiangong

Zebrafish thrive in space experiment on China's space station

CHIP TECH
AST SpaceMobile teams with Cadence to drive space-based cellular broadband

Parsons and Globalstar demonstrate first software-defined LEO satellite solution

Losses in 2024 cyclone season unusually high: Munich Re

Veteran Ventures Capital invests in Turion Space to drive advanced space technology

CHIP TECH
A new way to create realistic 3D shapes using generative AI

Speaking crystal AI predicts atomic arrangements to aid material discovery

Scientists explore sustainable use of fly ash for water treatment

Cracking the Code for materials that can learn

CHIP TECH
Unveiling a hydrogen-controlled nano-switch in electron transport proteins

Final data and undiscovered images from NASA's NEOWISE

Team identifies how interstellar medium impacts pulsar signals

Discovery Alert: a 'Hot Neptune' in a Tight Orbit

CHIP TECH
Magnetic tornado is stirring up the haze at Jupiter's poles

Uranus moons could hold clues to hidden oceans for future space missions

A clue to what lies beneath the bland surfaces of Uranus and Neptune

Europa Clipper deploys instruments on journey to icy moon of Jupiter

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.