. | . |
Does the Organic Material of Comets Predate our Solar System? by Staff Writers Paris, France (SPX) Sep 13, 2017
The Rosetta space probe discovered a large amount of organic material in the nucleus of comet "Chury." In an article published by MNRAS on August 31, 2017, two French researchers advance the theory that this matter has its origin in interstellar space and predates the birth of the Solar System. The ESA's Rosetta mission, which ended in September 2016, found that organic matter made up 40% (by mass) of the nucleus of comet 67P Churyumov-Gerasimenko, a.k.a. Chury. Organic compounds, combining carbon, hydrogen, nitrogen, and oxygen, are building blocks of life on Earth. Yet, according to Jean-Loup Bertaux and Rosine Lallement-from Laboratoire Atmospheres, Milieux, Observations Spatiales (CNRS / UPMC / Universite de Versailles Saint-Quentin-en-Yvelines) and the Galaxies, Etoiles, Physique et Instrumentation department of the Paris Observatory (Observatoire de Paris / CNRS / Universite Paris Diderot), respectively-these organic molecules were produced in interstellar space, well before the formation of the solar system. Bertaux and Lallement further assert that astronomers are already very familiar with the source of this matter. For 70 years, scientists have known that analysis of stellar spectra indicates unknown absorptions, throughout interstellar space, at specific wavelengths called the diffuse interstellar bands (DIBs). DIBs are attributed to complex organic molecules that American astrophysicist Theodore Snow believes may constitute the largest known reservoir of organic matter in the universe. This interstellar organic material is usually found in the same proportions. However, very dense clouds of matter like presolar nebulae are exceptions. In the middle of these nebulae, where matter is even denser, DIB absorptions plateau or even drop. This is because the organic molecules responsible for DIBs clump together there. The clumped matter absorbs less radiation than when it floated freely in space. Such primitive nebulae end up contracting to form a solar system like our own, with planets . . . and comets. The Rosetta mission taught us that comet nuclei form by gentle accretion of grains progressively greater in size. First, small particles stick together to form larger grains. These in turn combine to form still larger chunks, and so on, until we have a comet nucleus a few kilometers wide. Thus, the organic molecules that formerly populated the primitive nebulae-and that are responsible for DIBs-were probably not destroyed, but instead incorporated into the grains making up cometary nuclei. And there they have remained for 4.6 billion years. A sample-return mission would allow laboratory analysis of cometary organic material and finally reveal the identity of the mysterious interstellar matter underlying observed patterns in stellar spectra. If cometary organic molecules were indeed produced in interstellar space-and if they played a role in the emergence of life on our planet, as scientists believe today-might they not also have seeded life on many other planets of our galaxy?
Seattle WA (SPX) Sep 13, 2017 For decades, as astronomers have imagined advanced extraterrestrial civilizations, they categorized such worlds by the amount of energy their inhabitants might conceivably be able to harness and use. They sorted the hypothetical worlds into three types according to a scheme named in 1964 for Soviet astronomer Nikolai Kardashev. A Type 1 civilization could manipulate all the energy resource ... read more Related Links Entre National De La Recherche Scientifique Lands Beyond Beyond - extra solar planets - news and science Life Beyond Earth
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |