. 24/7 Space News .
TECTONICS
Does accelerated subduction precede great earthquakes
by Staff Writers
Potsdam, Germany (SPX) May 01, 2020

The motion of the tectonic plates changed in direction and speed in the months before the large earthquake.

A strange reversal of ground motion preceded two of the largest earthquakes in history. This is the result of a new study led by Jonathan Bedford of GFZ German Research Centre for Geosciences.

Together with a diverse team of geoscientists from GFZ, FU Berlin, Chile, and USA, he investigated signals recorded in Chile and Japan capturing the movement of GNSS stations before the great Maule quake in 2010 (magnitude 8.8) and the Tohoku-oki earthquake in 2011 (magnitude 9.0) which led to a devastating tsunami and the Fukushima nuclear meltdown. The scientists publish their findings in the latest issue of the scientific journal Nature.

Using state of the art geodetic analyses, the team reports a vast, 1000 km-scale region of the Earth's surface close to the plate boundary alternating its sense of motion over a period of several months directly leading up to both earthquakes. Both events occurred at the Pacific rim where oceanic plates dive beneath the continental crust in a process called subduction.

In Japan, a dense network of permanent stations is tracked by global navigational satellite systems (GNSS) with high precision so that researchers can observe how fast and in which direction the ground is moving.

In Chile, the network is not as dense but still tracks most of the deforming continental plate. Normally, the stations on land move away ever so slightly from the subduction trench as the continental crust is squeezed and thus shortened.

However, studying the time series of GNSS signals, the researchers found a reversal of direction: Suddenly the stations moved towards the subduction trench, i.e. towards the open ocean, and then reversed their direction again back to their normal movement (see animated gifs). Very shortly after this second reversal, the underground ruptured and the immense earthquakes occurred.

Aided by simple models and the best-known geological constraints, the authors propose that these reversals capture periods of enhanced pulling caused by rapid, densifying compositional changes in the oceanic plate as it subducts. Accordingly, it is suggested that these periods of enhanced tugging accelerated the inevitable failure at the shallower, frictionally-stuck segments of the subduction zone.

Jonathan Bedford explains: "It is a common assumption that deeper subduction proceeds at a fairly constant speed in between large earthquakes. Our study shows that this assumption is an oversimplification. In fact, its variability might be a key factor in understanding how the largest earthquakes nucleate."

Whether or not such strong reversals will occur before the next great earthquake remains to be seen, but what is clear from this study is that subduction zones are much more dynamic on the observable timescale than previously thought.

Research Report: "Months-Long thousand-km-scale wobbling before great subduction earthquakes"


Related Links
GFZ Geoforschungszentrum Potsdam, Helmholtz Centre
Tectonic Science and News


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECTONICS
Map of tectonic stresses in North America could help assess tremor risk
Washington DC (UPI) Apr 23, 2020
For the first time, scientists have produced a comprehensive map of the tectonic stresses acting on the North American continent. In the short term, the map of North American faults - published Thursday in the journal Nature Communications - could help scientists assess the risk of major tremors, as well as take steps to mitigate human-caused earthquakes. In the long term, the map could inspire and inform modeling efforts aimed at better understanding North America's geologic past, as ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECTONICS
Russian cargo capsule docks with ISS

Russian 'Victory Rocket' cargo flight docks at ISS

CASIS welcomes new NASA ISS National Lab program executive

Getting Down to Earth with CAVES in Space

TECTONICS
US Military not sure if Iran's launch of 'military' satellite was successful

Japanese astronaut prepares for flight aboard SpaceX's Crew Dragon

Dream Chaser spaceplane set to get wings

Can high-power microwaves reduce the launch cost of space-bound rockets?

TECTONICS
Promising signs for Perseverance rover in its quest for past Martian life

Nanocardboard flyers could serve as martian atmospheric probes

Surface Hot Springs May Have Existed on Ancient Mars

Mars 2020 Perseverance rover gets balanced

TECTONICS
China's first Mars exploration mission named Tianwen-1

Parachutes guide China's rocket debris safely to earth

China to launch IoT communications satellites named after Wuhan

China's experimental manned spaceship undergoes tests

TECTONICS
Elon Musk's SpaceX launches 60 Starlink satellites from Florida

SpaceX plans Wednesday Starlink satellite launch from Florida

US wants to mine resources in space, but is it legal?

NewSpace Philosophies: Who, How, What?

TECTONICS
Heat-friendly microbes provide efficient way to biodegrade plastic

Scientists discover just how runny a liquid can be

Papua New Guinea seizes Barrick, Zijin gold mine

Synthesizing ammonia using less energy

TECTONICS
Hubble observes aftermath of massive collision

Researchers use 'hot Jupiter' data to mine exoplanet chemistry

New study reveals life's earliest evolution was more complicated than previously suspected

ASU scientists lead study of galaxy's 'water worlds'

TECTONICS
Jupiter probe JUICE: Final integration in full swing

The birth of a "Snowman" at the edge of the Solar System

New Horizons pushing the frontier ever deeper into the Kuiper Belt

Mysteries of Uranus' oddities explained by Japanese astronomers









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.