![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Charlottesville VA (SPX) Jul 10, 2018
Astronomers using the National Science Foundation's Very Long Baseline Array (VLBA) have made an image revealing tantalizing details of a quasar nearly 13 billion light-years from Earth - an object that may provide important clues about the physical processes at work in the Universe's first galaxies. The scientists studied a quasar called PSO J352.4034-15.3373 (P352-15), an unusually bright emitter of radio waves for an object so distant. The extremely sharp radio "vision" of the VLBA showed the object split into three major components, two of which show further subdivision. The components are spread over a distance of only about 5,000 light-years. Quasars are galaxies with supermassive black holes at their cores - black holes millions or billions of times more massive than the Sun. The powerful gravitational pull of such a black hole draws in nearby material, which forms a rotating disk around the massive object. The rapidly-spinning disk spews jets of particles moving outward at speeds approaching that of light. These energetic "engines" are bright emitters of light and radio waves. "This is the most detailed image yet of such a bright galaxy at this great distance," said Emmanuel Momjian, of the National Radio Astronomy Observatory (NRAO). "There is a dearth of known strong radio emitters from the Universe's youth and this is the brightest radio quasar at that epoch by a factor of 10," said Eduardo Banados of the Carnegie Institution for Science in Pasadena, California. "We are seeing P352-15 as it was when the Universe was less than a billion years old, or only about 7 percent of its current age," said Chris Carilli, of NRAO. "This is near the end of a period when the first stars and galaxies were re-ionizing the neutral hydrogen atoms that pervaded intergalactic space. Further observations may allow us to use this quasar as a background 'lamp' to measure the amount of neutral hydrogen remaining at that time," he added. The astronomers said the three major components of P352-15 can be explained in one of two ways. One explanation is that they're seeing the bright core of the quasar, corresponding to the location of the supermassive black hole itself, at one end, and the two other bright spots are parts of a one-sided jet. The other possibility is that their middle object is the core, and the other objects are jets ejected in opposite directions. Because one of the end objects is closest to the position of the quasar as seen with visible-light telescopes, they consider the one-sided jet to be the more likely explanation. The one-sided jet explanation raises the exciting possibility that astronomers may be able to detect and measure the expansion of the jet by observing P352-15 over several years. "This quasar may be the most distant object in which we could measure the speed of such a jet," Momjian said. If, instead, the middle object is the core, with two oppositely-moving jets, its small size suggests that it may be very young or be embedded in dense gas that is slowing the jets' expansion. Planned future observations will tell which scenario is accurate, the scientists said. "This quasar's brightness and its great distance make it a unique tool to study the conditions and processes that prevailed in the first galaxies in the Universe," Carilli said. "We look forward to unraveling more of its mysteries," he added. Momjian, Banados, and Carilli worked with Fabian Walter of the Max Planck Institute for Astronomy in Heidelberg, Germany; and Bram Venemans, also of the Max Planck Institute. The astronomers are reporting their findings in the Astrophysical Journal.
![]() ![]() Groundbreaking Study Sheds New Light on Galaxy Evolution Porto, Portugal (SPX) Jul 09, 2018 Using integral field spectroscopy[1] (IFS) and advanced modeling tools, Instituto de Astrofisica e Ciencias do Espaco[2] (IA) researchers Iris Breda and Polychronis Papaderos have achieved an important milestone towards solving a long standing enigma in extragalactic astronomy - the nature and formation of the central spherical component in spiral galaxies like the Milky Way. The bulge is thought to form through two distinct routes: Classical bulges consist of ancient stars, older than the disk, b ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |