![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Irvine CA (SPX) Feb 20, 2018
An international team of astronomers has determined that Centaurus A, a massive elliptical galaxy 13 million light-years from Earth, is accompanied by a number of dwarf satellite galaxies orbiting the main body in a narrow disk. In a paper published in Science, the researchers note that this is the first time such a galactic arrangement has been observed outside the Local Group, home to the Milky Way. "The significance of this finding is that it calls into question the validity of certain cosmological models and simulations as explanations for the distribution of host and satellite galaxies in the universe," said co-author Marcel Pawlowski, a Hubble Fellow in the Department of Physics and Astronomy at the University of California, Irvine. He said that under the lambda cold dark matter model, smaller systems of stars should be more or less randomly scattered around their anchoring galaxies and should move in all directions. Yet Centaurus A is the third documented example, behind the Milky Way and Andromeda, of a "vast polar structure" in which satellite dwarves co-rotate around a central galactic mass in what Pawlowski calls "preferentially oriented alignment." The difficulty of studying the movements of dwarf satellites around their hosts varies according to the target galaxy group. It's relatively easy for the Milky Way. "You get proper motions," Pawlowski said. "You take a picture now, wait three years or more, and then take another picture to see how the stars have moved; that gives you the tangential velocity." Using this technique, scientists have measurements for 11 Milky Way satellite galaxies, eight of which are orbiting in a tight disk perpendicular to the spiral galaxy's plane. There are probably other satellites in the system that can't be seen from Earth because they're blocked by the Milky Way's dusty disk. Andromeda provides observers on Earth a view of the full distribution of satellites around the galaxy's sprawling spiral. An earlier study found 27 dwarf galaxies, 15 arranged in a narrow plane. And Andromeda offers another advantage, according to Pawlowski: "Because you see the galaxy almost edge-on, you can look at the line-of-sight velocities of its satellites to see the ones that are approaching and those that are receding, so it very clearly presents as a rotating disk." Centaurus A is much farther away, and its satellite companions are faint, making it more difficult to accurately measure distances and velocities to determine movements and distributions. But "sleeping in the archives," Pawlowski said, were data on 16 of Centaurus A's satellites. "We could do the same game as with Andromeda, where we look at the line-of-sight velocities," he said. "And again we see that half of them are red-shifted, meaning they are receding from us, and the other half are blue-shifted, which tells us they are approaching." The researchers were able to demonstrate that 14 of the 16 Centaurus A satellite galaxies follow a common motion pattern and rotate along the plane around the main galaxy - contradicting frequently used cosmological models and simulations suggesting that only about 0.5 percent of satellite galaxy systems in the nearby universe should exhibit this pattern. "So this means that we are missing something," Pawlowski said. "Either the simulations lack some important ingredient, or the underlying model is wrong. This research may be seen as support for looking into alternative models."
![]() ![]() VLT Working as 16-Meter Telescope for First Time Garching, Germany (SPX) Feb 14, 2018 One of the original design goals of ESO's Very Large Telescope (VLT) was for its four Unit Telescopes (UTs) to work together to create a single giant telescope. With the first light of the ESPRESSO spectrograph using the four-Unit-Telescope mode of the VLT, this milestone has now been reached [1]. After extensive preparations by the ESPRESSO consortium (led by the Astronomical Observatory of the University of Geneva, with the participation of research centres from Italy, Portugal, Spain and Switze ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |