. 24/7 Space News .
CHIP TECH
Discovery suggests new promise for nonsilicon computer transistors
by Daniel Ackerman for MIT News
Boston MA (SPX) Dec 10, 2020

stock illustration only

For decades, one material has so dominated the production of computer chips and transistors that the tech capital of the world - Silicon Valley - bears its name. But silicon's reign may not last forever.

MIT researchers have found that an alloy called InGaAs (indium gallium arsenide) could hold the potential for smaller and more energy efficient transistors. Previously, researchers thought that the performance of InGaAs transistors deteriorated at small scales. But the new study shows this apparent deterioration is not an intrinsic property of the material itself.

The finding could one day help push computing power and efficiency beyond what's possible with silicon. "We're really excited," said Xiaowei Cai, the study's lead author. "We hope this result will encourage the community to continue exploring the use of InGaAs as a channel material for transistors."

Cai, now with Analog Devices, completed the research as a PhD student in the MIT Microsystems Technology Laboratories and Department of Electrical Engineering and Computer Science (EECS), with Donner Professor Jesus del Alamo. Her co-authors include Jesus Grajal of Polytechnic University of Madrid, as well as MIT's Alon Vardi and del Alamo. The paper will be presented this month at the virtual IEEE International Electron Devices Meeting.

Transistors are the building blocks of a computer. Their role as switches, either halting electric current or letting it flow, gives rise to a staggering array of computations - from simulating the global climate to playing cat videos on Youtube. A single laptop could contain billions of transistors. For computing power to improve in the future, as it has for decades, electrical engineers will have to develop smaller, more tightly packed transistors. To date, silicon has been the semiconducting material of choice for transistors. But InGaAs has shown hints of becoming a potential competitor.

Electrons can zip through InGaAs with ease, even at low voltage. The material is "known to have great [electron] transport properties," says Cai. InGaAs transistors can process signals quickly, potentially resulting in speedier calculations. Plus, InGaAs transistors can operate at relatively low voltage, meaning they could enhance a computer's energy efficiency. So InGaAs might seem like a promising material for computer transistors. But there's a catch.

InGaAs' favorable electron transport properties seem to deteriorate at small scales - the scales needed to build faster and denser computer processors. The problem has led some researchers to conclude that nanoscale InGaAs transistors simply aren't suited for the task. But, says Cai, "we have found that that's a misconception."

The team discovered that InGaAs' small-scale performance issues are due in part to oxide trapping. This phenomenon causes electrons to get stuck while trying to flow through a transistor. "A transistor is supposed to work as a switch. You want to be able to turn a voltage on and have a lot of current," says Cai. "But if you have electrons trapped, what happens is you turn a voltage on, but you only have a very limited amount of current in the channel. So the switching capability is a lot lower when you have that oxide trapping."

Cai's team pinpointed oxide trapping as the culprit by studying the transistor's frequency dependence - the rate at which electric pulses are sent through the transistor. At low frequencies, the performance of nanoscale InGaAs transistors appeared degraded. But at frequencies of 1 gigahertz or greater, they worked just fine - oxide trapping was no longer a hindrance. "When we operate these devices at really high frequency, we noticed that the performance is really good," she says. "They're competitive with silicon technology."

Cai hopes her team's discovery will give researchers new reason to pursue InGaAs-based computer transistors. The work shows that "the problem to solve is not really the InGaAs transistor itself. It's this oxide trapping issue," she says. "We believe this is a problem that can be solved or engineered out of." She adds that InGaAs has shown promise in both classical and quantum computing applications.

"This [research] area remains very, very exciting," says del Alamo. "We thrive on pushing transistors to the extreme of performance." One day, that extreme performance could come courtesy of InGaAs.

This research was supported in part by the Defense Threat Reduction Agency and the National Science Foundation.


Related Links
MIT News Office
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
DARPA looks to light up integrated photonics with chip-scale laser development
Washington DC (SPX) Dec 03, 2020
First demonstrated sixty years ago, the laser has become an essential technology in today's world. It has transformed diverse fields including communications, sensing, manufacturing, and medicine. More recently, innovations in integrated photonics have allowed the miniaturization of key optical components and the ability to arrange several elements on a single silicon chip. When combined with lasers, these photonic integrated circuits (PICs) have the potential to replace large and costly optical systems ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Voyager 1 and 2 detect new kind of solar electron burst

Rad dishes in space

Proposed New Russian Space Station Will Be Able to Monitor the Entire World

Russia's Energia suggests building national space station

CHIP TECH
SpaceX's Falcon 9 lifts off, en route to International Space Station

EUMETSAT confirms the choice of Arianespace's European launchers for its future missions

NASA Building Core Stages for Second, Third Artemis Flights

SpaceX Falcon 9 and Cargo Dragon Prepare for Rollout

CHIP TECH
Best region for life on Mars was far below surface

New tech can get oxygen, fuel from Mars's salty water

Laboratory experiments unravelling the mystery of the Mars moon Phobos

ESA and Auroch Digital launch Mars Horizon game

CHIP TECH
China plans to launch new space science satellites

How it took decades for space program to take off

China to Begin Construction of Its Space Station Next Year

Moon mission tasked with number of firsts for China

CHIP TECH
NT forging ahead in the space race

Telesat to become public company through agreement with Loral Space and Communications and PSP Investments

Spanish science minister calls for better regulation of private space activities

Major funding package pledged for UK Space Centre of Excellence in Ayrshire, Scotland

CHIP TECH
Microfibers could allow pieces of clothing to track a variety of vital signs

Stanford engineers combine light and sound to see underwater

Recycled concrete could reduce pressure on landfills

ESA and ClearSpace SA sign contract for world's first debris removal mission

CHIP TECH
Fast-moving gas flowing away from young star's asteroid belt may be caused by icy comet vaporisation

Rapid-forming giants could disrupt spiral protoplanetary discs giants

Here's Looking at You, MKID

A terrestrial-mass planet on the run?

CHIP TECH
Swedish space instrument participates in the search for life around Jupiter

Researchers model source of eruption on Jupiter's moon Europa

Radiation Does a Bright Number on Jupiter's Moon

New plans afoot beyond Pluto









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.