. | . |
Discovering trailing components of a coronal mass ejection by Staff Writers Tucson AZ (SPX) Aug 28, 2018
Using Green Bank Observatory in West Virginia, PSI Associate Research Scientist Elizabeth A. Jensen's team observed radio signals from the MESSENGER spacecraft and discovered that solar eruptions known to cause communication disruptions and electrical grid failures as they hit Earth have secondary trailing impacts. Jensen is lead author of "Plasma Interactions with the Space Environment in the Acceleration Region: Indications of CME-trailing Reconnection Regions" that appears in The Astrophysical Journal. Co-authors include PSI Senior Scientists Deborah Domingue Lorin and Faith Vilas. Coronal mass ejections, or CMEs, are powerful, massive solar eruptions that can trigger geomagnetic storms, Jensen said. CMEs are often associated with solar flares. "The most powerful CMEs may travel at 2,000 kilometers per second, passing the Earth in seconds. We have discovered reconnection regions trailing behind a CME traveling 750 kilometers per second," Jensen said. "This suggests that the impact of a CME on the Earth's space weather consists of the initial shock from the CME and also secondary shocks from powerful electrical currents and accelerated plasmas trailing in the CME's wake." These events can affect human activity and technology not only in space but also within the atmosphere and ultimately on the ground, Jensen said. In 1989, a powerful CME caused problems in satellites orbiting the Earth, the space shuttle Discovery, and electric grids resulting with 6 million people in Canada losing power. "These secondary regions trailing the CME front have never been seen before because we have had few opportunities to probe this area with spacecraft. The MESSENGER spacecraft orbiting Mercury on the other side of the Sun was in the right place at the right time to observe a CME safely by passing radio signals through it to the Earth," said Jensen. "Understanding the three-dimensional structure of these eruptions that strike the Earth is essential to properly preparing for their potential effects."
Research Report: "Plasma Interactions with the Space Environment in the Acceleration Region: Indications of CME-trailing Reconnection Regions," Elizabeth A. Jensen et al., 2018 July 11, Astrophysical Journal
Crystalline silica in meteorite brings scientists closer to understanding solar evolution Tokyo, Japan (SPX) Aug 23, 2018 A team of researchers from Waseda University, the Graduate University for Advanced Studies, the University of Hawaii at Manoa, Harvard University, and the National Institute for Polar Research discovered silica mineral quartz in a primitive meteorite, becoming the first in the world to present direct evidence of silica condensation within the solar protoplanetary disk and coming a step closer to understanding solar formation and evolution. Though previous infrared spectroscopic observations have s ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |