. | . |
Did meteorite impacts help create life on Earth and beyond by Staff Writers London, Canada (SPX) Sep 03, 2020
What if impact craters, long seen as harbingers of death, turned out to be the cradle of life? For Western University planetary scientist Gordon Osinski, this isn't just the big question posed in his latest study, but an overriding theme of his celebrated academic career. The new study, published in Astrobiology, posits that impact craters should absolutely be considered by space agencies like NASA and ESA as top exploration targets, not just for their invaluable post-impact geological records, but also - and perhaps more importantly - as prime locations for seeking potential habitats for extraterrestrial life. "There are a lot of hypotheses for where life started on Earth and where we should look for life on Mars, but we are actually overlooking a major geological force and a key habitat in understanding the origin of life and that's meteorite impacts and their resulting craters," said Osinski, Director of Western's Institute for Earth and Space Exploration (Western Space). Leading an international team with investigators from the University of Edinburgh, Georgetown University, and the University of Southern California, this new study is grounded in Osinski's extensive field work and laboratory studies of meteorite impacts over the past two decades. "If you ask anyone to imagine what happens when you have kilometre-size chunks of rock hitting the Earth, it's typically destructive. It's an extinction event like the one that killed the dinosaurs," said Osinski. "What we're trying to do here is turn that idea up on its head and say yes, the impact is initially destructive, but it also delivers the building blocks for life and creates new habitats for life. They [impact craters] essentially create an oasis for life." Osinski and collaborators propose that given the pervasive nature of impact events and their increased frequency during the first 500 million years of Solar System history that meteorite impact craters may represent the most likely sites where life originated on Earth. Unfortunately, says Osinski, we'll never really know. "I put my money on meteorite impacts as the place where life could have originated on Earth, but we'll never know," said Osinski, also Professor in Western's Department of Earth Sciences. "Unfortunately, due to billions of years of erosion, plate tectonics, and volcanism, we've lost the vast majority of the ancient rock record on Earth. So we're never going to know exactly where or even when, to be honest, life originated on Earth." But maybe it's not too late for the Red Planet. By exploring Mars with rovers like Perseverance and ExoMars, Osinski believes planetary scientists might eventually figure out the origin of life - and they just might - as long as they are looking in the right place. "There are other impact craters on Mars that may have been better to explore with these ideas in mind," said Osinski. "But Perseverance is going to land in Jezero Crater and there is evidence of minerals such as clays formed through hydrothermal activity. It's a good place to start to explore the role of meteorite impacts in the origin of life, as long as they look out for the habitats, nutrients, and building blocks for life that we outlined in our study." To date, 200 impact craters have been investigated and confirmed on Earth using fieldwork, geophysics, satellite data, and various laboratory analysis techniques in pioneering laboratories at Western and others around the world. Osinski and his team have collected and posted relevant data for all 200 craters as part of Western's Impact Earth initiative (www.impactearth.com).
Research Report: "The Role of Meteorite Impacts in the Origin of Life"
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |