24/7 Space News
CARBON WORLDS
Diatom surprise could rewrite the global carbon cycle
illustration only
Diatom surprise could rewrite the global carbon cycle
by Daniel Kane for UCSD News
San Diego CA (SPX) Jul 18, 2024

When it comes to diatoms that live in the ocean, new research suggests that photosynthesis is not the only strategy for accumulating carbon. Instead, these single-celled plankton are also building biomass by feeding directly on organic carbon in wide swaths of the ocean. These new findings could lead researchers to reduce their estimate of how much carbon dioxide diatoms pull out of the air via photosynthesis, which in turn, could alter our understanding of the global carbon cycle, which is especially relevant given the changing climate.

This research is led by bioengineers, bioinformatics experts and other genomics researchers at the University of California San Diego. The new findings are published in Science Advances on July 17, 2024.

The team showed that the diatom Cylindrotheca closterium, which is found in oceans around the world, regularly performs a simultaneous mix of both photosynthesis and direct eating of carbon from organic sources such as plankton. In more than 70% of the water samples the researchers analyzed from oceans around the world, the team found signs of simultaneous photosynthesis and direct organic carbon consumption from Cylindrotheca closterium.

The team also showed that this diatom species can grow much faster when consuming organic carbon in addition to photosynthesis.

Furthermore, the new research hints at the tantalizing possibility that specific species of bacteria are feeding organic carbon directly to a large percentage of these diatoms living all across the global ocean.

This work is based on a genome-scale metabolic modeling approach that the team used to unravel the metabolism of the diatom Cylindrotheca closterium. The researchers constrained their genome-scale metabolic model with global gene expression data obtained from the TARA ocean expedition. The researchers believe this is the first time genome-scale models have been used at a global scale.

The team's new metabolic modeling data support recent lab experiments suggesting that some diatoms may rely on strategies other than photosynthesis to intake the carbon they need to survive, thrive and build biomass.

The UC San Diego led team is in the process of expanding the scope of the project to determine how widespread this non-photosynthetic activity is among other diatom species.

Are ocean bacteria feeding diatoms?
When the team looked at the physical and chemical parameters measured in their ocean water samples - including temperature, pH, salinity, light, nitrogen and carbon availability - they did not find any correlation between those parameters and a tendency by the diatoms to steer away from photosynthesis-only strategies.

However, the team found a clear signal when exploring specific bacterial populations co-existing with the diatom Cylindrotheca closterium in the ocean water samples. This finding hints at bacteria-diatom interactions that drive the simultaneous mix of photosynthesis and direct consumption of organic carbon - a phenomenon known as "mixotrophy."

The team believes that specific bacteria may be feeding the diatoms directly, helping these diatoms to be one of the most successful and important microbes on the planet, in terms of oxygen production, carbon sequestration, and as a foundation of food webs that support nearly all life in the ocean.

"Diatoms are major contributors to marine food chains and key drivers of the global carbon cycle. Previously, we have estimated all carbon cycling models on the assumption that the only role that diatoms play is in carbon dioxide fixation. Our findings demonstrate that this is not the case, but that diatoms simultaneously also eat organic carbon. In other words, we have shown that diatoms do not rely exclusively on carbon dioxide fixation for their growth and biomass production. We believe these results will have major implications for our understanding of global carbon cycling," said UC San Diego Professor Karsten Zengler, professor in the Departments of Pediatrics and Bioengineering and researcher in the Center for Microbiome Innovation at the Jacobs School of Engineering.

"While there have been curious observations in the laboratory regarding diatoms deviating from photosynthesis, it has been impossible to test what kind of metabolism these diatoms perform in the ocean - until now. This is because there are many, many genes involved in this process, and it's very difficult to delineate what process is active from gene expression data alone. Our approach gets around this challenge."

The research team hopes this work will stimulate interest in taking a much closer look at our understanding of the global carbon cycle, taking into consideration this new broader understanding of how ocean diatoms get their carbon.

What the bacteria feeding the diatoms may be getting out of the relationship is another question for further research.

Research Report:Mixotrophic growth of a ubiquitous marine diatom

Related Links
University of California - San Diego
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
CARBON WORLDS
Scientists Develop PrISMa Platform to Enhance Carbon Capture Technology
London, UK (SPX) Jul 18, 2024
A significant challenge for net zero technologies in addressing climate change is bridging the gap between fundamental research and its real-world application. This gap, often termed the "valley of death," is particularly prevalent in carbon capture technologies. These technologies use novel materials to extract carbon dioxide from industrial flue gases, preventing it from entering the atmosphere and thereby mitigating climate change. Thousands of novel materials, such as metal-organic frameworks, ... read more

CARBON WORLDS
ISS Crew Engages in Varied Research and Maintenance Tasks

Juice prepares for historic double flyby of Moon and Earth

NASA cans lunar rover after spending $450 million building it

Food aromas study sheds light on taste issues in space

CARBON WORLDS
NASA Sounding Rocket Launches, Studies Heating of Sun's Active Regions

NASA and Boeing finalize Starliner engine tests and proceed with analysis

NASA Ships SLS Core Stage to Florida for Artemis II

HyPrSpace tests hybrid rocket engine at DGA Missile Site

CARBON WORLDS
NASA picks next 4 crew members for simulated Mars mission in Texas

NASA rover finds pure sulfur crystals in Martian rock

AI enhancements drive Mars rover discoveries

Voyagers of Mars: The First CHAPEA Crew's Yearlong Journey

CARBON WORLDS
Shenzhou XVIII Crew Conducts Emergency Drill on Tiangong Space Station

Beijing Unveils 'Rocket Street' to Boost Commercial Space Sector

Shenzhou XVII Crew Shares Post-Mission Insights with Media

Shenzhou XVIII Crew Successfully Completes Second Spacewalk

CARBON WORLDS
Booz Allen Invests in Quindar to Enhance Satellite Automation

Maritime Satellite Communications Market Expands with Rising NGSO Solutions

SpaceX Successfully Launches Turkey's First Home-Grown Communications Satellite

Ovzon 3 Satellite Commences Commercial Service

CARBON WORLDS
New Age for Earth's Largest Iron Deposits Discovered by Curtin University

Astroscale UK Wins Contract for Final Phase of ELSA-M Demonstration

ESA Reports on Growing Space Debris and Mitigation Efforts

Axelspace Unveils AxelLiner Laboratory for In-orbit Space Component Demonstrations

CARBON WORLDS
New Magnetic Criteria Suggest Only Two Exoplanets Potentially Habitable

Exoplanet's Unique Orbit Sheds Light on Formation of Massive Gas Giants

Astronomers Discover Unique Orbit of Rare Exoplanet with WIYN Telescope

Life signs may survive near the surface of Enceladus and Europa

CARBON WORLDS
NASA's Juno Mission Captures Dynamic Cloud Patterns on Jupiter

Queen's University Belfast Researchers Investigate Mysterious Brightening of Chiron

NASA Evaluates Electrical Components for Europa Clipper Mission

Subaru Telescope Discovers New Objects Beyond the Kuiper Belt

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.