. 24/7 Space News .
TIME AND SPACE
Diamond quantum sensor detects "magnetic flow" excited by heat
by Staff Writers
Nomi, Japan (SPX) Jan 27, 2022

This image shows the interaction between N-V centers, the thermal magnon current, and the low-energy spin waves (coherent magnons).

In recent times, sustainable development has been the overarching guiding principle of research concerning environmental issues, energy crises, and information and communication technology. In this regard, spintronic devices have emerged as promising candidates for surpassing conventional technology, which has run into the problem of excess waste heat generation in miniaturized devices.

The electron "spin" responsible for the electric and magnetic property of a material are being used to develop next generation energy-efficient and miniature spintronic devices. At the heart of this new technology are "magnons," quanta of spin excitation waves, and their detection is key to further progress in this field. Recently, within the field of spintronics, devices based on the interaction between spin and heat flow have emerged as a potential candidate for new thermoelectric devices (devices which convert heat to electricity).

In the meantime, nitrogen-vacancy (N-V) centers in diamond, basically a point defect consisting of a nitrogen atom paired with an adjacent lattice vacancy, has emerged as a key for high-resolution quantum sensors. Interestingly, recently, it has been demonstrated that N-V centers can detect coherent magnon. However, detecting the thermally excited magnons by heat using N-V centers is difficult since the thermal magnons have much higher energy than the spin state of N-V centers, limiting their interaction.

Now in a collaborative study published in Physical Review Applied, Associate Professor Toshu An from Japan Advanced Institute of Science and Technology (JAIST) and Dwi Prananto, a PhD graduate from JAIST, along with researchers from Kyoto University, Japan, and the National Institute for Materials Science, Japan, have successfully detected these energetic magnons in yttrium iron garnet (YIG), a magnetic insulator, by using a quantum sensor based on diamond with NV centers.

To achieve this feat, the team used the interaction between coherent, low-energy magnons and N-V centers as an indirect way to detect the thermally excited magnons. As it turns out, the current produced by thermal magnons modifies the low-energy magnons by exerting a torque on them, which can be picked up by the N-V centers. Therefore, the method provides a way to detect thermal magnons by observing the changes in the coherent magnons.

To demonstrate this, the researchers set up a YIG garnet sample with two gold antennas placed at the ends of the sample's surface and placed a small diamond sensor at the center of the sample close to the surface. They then set up low-energy spin waves corresponding to the coherent magnons in the sample using microwaves and generated thermal magnons by producing a temperature gradient across the sample. Sure enough, the diamond sensor picked up on the changes to the coherent magnons caused by the induced thermal magnon current.

The ability to detect thermal magnons with N-V centers is particularly advantageous, as Dr. An explains: "Our study provides a detection tool for thermal magnon currents that can be placed locally and over a broad range of distances from spin waves. This is not possible with conventional techniques, which require a relatively large electrode and specific configurations with proximal distance to the spin waves."

These findings could not only open up new possibilities in quantum sensing but also pave the way for its integration with spin caloritronics. "Our work could lay the foundation for spintronic devices controlled by heat sources," says Dr. An.

Some very consequences to speculate, for sure!

Research Report: "Probing Thermal Magnon Current Mediated by Coherent Magnon via Nitrogen-Vacancy Centers in Diamond"


Related Links
Japan Advanced Institute of Science and Technology
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Scientists make first detection of exotic "X" particles in quark-gluon plasma
Boston MA (SPX) Jan 22, 2022
In the first millionths of a second after the Big Bang, the universe was a roiling, trillion-degree plasma of quarks and gluons - elementary particles that briefly glommed together in countless combinations before cooling and settling into more stable configurations to make the neutrons and protons of ordinary matter. In the chaos before cooling, a fraction of these quarks and gluons collided randomly to form short-lived "X" particles, so named for their mysterious, unknown structures. Today, X pa ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
New ISS National Laboratory tool expands visibility of ISS-related educational resources

Caltech names Laurie Leshin Director of JPL

US issues visa to Russian ISS cosmonaut

NASA provides updated International Space Station Transition Plan

TIME AND SPACE
Skyroot Aerospace to fly its rocket from mobile launch pad in 2022

New tech spurs spaceplane vision: halfway around world in 40 minutes

SpaceX sucessfully launches Italian Earth-observation satellite

12 Companies to Provide Venture Class Launch Services for NASA

TIME AND SPACE
SwRI scientist helps confirm liquid water beneath Mars south polar cap

Extremely harsh volcanic lake shows how life might have existed on Mars

Sols 3367-3368: The Prow to take another bow

Crater tree rings

TIME AND SPACE
China Focus: China to explore lunar polar regions, mulling human landing: white paper

China to boost satellite services, space technology application: white paper

China Focus: China to explore space science more: white paper

China to improve space debris monitoring: white paper

TIME AND SPACE
In space race, Europe faces choice: passenger or pilot

Blue Origin set to acquire Honeybee Robotics

Advances in Space Transportation Systems Transforming Space Coast

EU launches 'game changer' space startup fund

TIME AND SPACE
New funding to support sustainable future of space

Space Power to revolutionize satellite power using laser beaming

NASA aims to make observations from space junk collision with Moon

Chinese satellite reportedly grappled, moved another spacecraft away from orbit

TIME AND SPACE
Exoplanet has Earth-like layered atmosphere made of titanium gas

Extreme exoplanet has a complex and exotic atmosphere

What the rise of oxygen on early Earth tells us about life on other planets

A planetary dynamical crime scene at 14 Herculis

TIME AND SPACE
Oxygen ions in Jupiter's innermost radiation belts

Ocean Physics Explain Cyclones on Jupiter

Looking Back, Looking Forward To New Horizons

Testing radar to peer into Jupiter's moons









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.