. 24/7 Space News .
SOLAR SCIENCE
Detecting solar flares, more in real time
by Staff Writers
Boulder CO (SPX) Dec 04, 2019

(upper panel) This new technique transforms observations during the September 6th, 2017, solar flare into understandable, multi-colored maps. Different colors identify different solar phenomena. (lower panel) The SUVI thematic map (right) produced by the new algorithm tracks changes in the Sun (left) over time. In the thematic map, different colors correspond to different themes: yellow corresponds to active regions, while dark blue shows quiet solar regions.

Computers can learn to find solar flares and other events in vast streams of solar images and help NOAA forecasters issue timely alerts, according to a new study. The machine-learning technique, developed by scientists at CIRES and NOAA's National Centers for Environmental Information (NCEI), searches massive amounts of satellite data to pick out features significant for space weather. Changing conditions on the Sun and in space can affect various technologies on Earth, blocking radio communications, damaging power grids, and diminishing navigation system accuracy.

"Being able to process solar data in real time is important because flares erupting on the Sun impact Earth over the course of minutes. These techniques provide a rapid, continuously updated overview of solar features and can point us to areas requiring more scrutiny," said Rob Steenburgh, a forecaster in the NOAA Space Weather Prediction Center (SWPC) in Boulder.

The research was published in October in the Journal of Space Weather and Space Climate.

To predict incoming space weather, forecasters summarize current conditions on the Sun twice daily. Today, they use hand-drawn maps labeled with various solar features - including, active regions, filaments, and coronal hole boundaries.

But solar imagers produce a new set of observations every few minutes. For example, the Solar Ultraviolet Imager (SUVI) on NOAA's GOES-R Series satellites runs on a 4-minute cycle, collecting data in six different wavelengths every cycle.

Just keeping up with all of that data could take up a lot of a forecaster's time. "We need tools to process solar data into digestible chunks," said Dan Seaton, a CIRES scientist working at NCEI and one of the paper's co-authors. CIRES is part of the University of Colorado Boulder.

So J. Marcus Hughes, a computer science graduate student at CU Boulder, CIRES scientist in NCEI and lead author of the study, created a computer algorithm that can look at all the SUVI images simultaneously and spot patterns in the data. With his colleagues, Hughes created a database of expert-labeled maps of the Sun and used those images to teach a computer to identify solar features important for forecasting.

"We didn't tell it how to identify those features, but what to look for - things like flares, coronal holes, bright regions, filaments, and prominences. The computer learns the how through the algorithm," Hughes said.

The algorithm identifies solar features using a decision-tree approach that follows a set of simple rules to distinguish between different traits. It examines an image one pixel at a time and decides, for example, whether that pixel is brighter or dimmer than a certain threshold before sending it down a branch of the tree. This repeats until, at the very bottom of the tree, each pixel fits only one category or feature - a flare, for example.

The algorithm learns hundreds of decision trees - and makes hundreds of decisions along each tree - to distinguish between different solar features and determine the "majority vote" for each pixel. Once the system is trained, it can classify millions of pixels in seconds, supporting forecasts that could be routine or require an alert or warning.

"This technique is really good at using all the data simultaneously," Hughes said. "Because the algorithm learns so rapidly it can help forecasters understand what's happening on the Sun far more quickly than they currently do."

The technique also sees patterns humans can't. "It can sometimes find features we had difficulty identifying correctly ourselves. So machine learning can direct our scientific inquiry and identify important characteristics of features we didn't know to look for," Seaton said.

The algorithm's skill at finding patterns is not only useful for short-term forecasting, but also for helping scientists evaluate long-term solar data and improve models of the Sun. "Because the algorithm can look at 20 years' worth of images and find patterns in the data, we'll be able to answer questions and solve long-term problems that have been intractable," Seaton said.

NCEI and SWPC are still testing the tool for tracking changing solar conditions so forecasters can issue more accurate watches, warnings, and alerts. The tool could be made officially operational as early as the end of 2019.

Research paper


Related Links
University of Colorado at Boulder
Solar Science News at SpaceDaily


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SOLAR SCIENCE
SwRI-built instrument confirms solar wind slows farther away from the Sun
San Antonio TX (SPX) Dec 03, 2019
Measurements taken by the Solar Wind Around Pluto (SWAP) instrument aboard NASA's New Horizons spacecraft are providing important new insights from some of the farthest reaches of space ever explored. In a paper recently published in the Astrophysical Journal, a team led by Southwest Research Institute shows how the solar wind - the supersonic stream of charged particles blown out by the Sun - evolves at increasing distances from the Sun. "Previously, only the Pioneer 10 and 11 and Voyager 1 and 2 ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR SCIENCE
Spacewalkers back inside ISS after completing work to repair particle detector

All toilets at ISS Break Down, astronauts forced to use 'diapers'

Go for lunch: Japanese yakitori chicken gets space thumbs-up

Russian Roscosmos Says Progress MS-12 Burns Up in Atmosphere After Undocking

SOLAR SCIENCE
Land acquisition underway for 2nd rocket port in Tuticorin

Ariane 5's fourth launch this year

Artemis II rocket propellant tanks prepped for next phase of manufacturing

Launch delayed of satellite from New Zealand that creates artificial shooting stars

SOLAR SCIENCE
Solving fossil mystery could aid quest for ancient life on Mars

Global storms on Mars launch dust towers into the sky

Glaciers as landscape sculptors - the mesas of Deuteronilus Mensae

NASA updates Mars 2020 Mission Environmental Review

SOLAR SCIENCE
China launches satellite service platform

China plans to complete space station construction around 2022: expert

China conducts hovering and obstacle avoidance test in public for first Mars lander mission

Beijing eyes creating first Earth-Moon economic zone

SOLAR SCIENCE
Europe faces up to new space challenges

Germany invests 3.3 billion euro in European space exploration and becomes ESA's largest contributor

Nanoracks-Italy signs MOUs for partnerships with spin-offs from the University of Piemonte Orientale

ESA and Luxembourg Space Agency confirm partnership on space resources

SOLAR SCIENCE
Dutch antennas unfolded behind the moon

New launch communications segment empowers Artemis

Cleaning the dishes is a dusty job in outback Australia

Smart satellites to the rescue of broken satellites

SOLAR SCIENCE
Astronomers propose a novel method of finding atmospheres on rocky worlds

Animal embryos evolved before animals

Scientists sequence genome of devil worm, deepest-living animal

Life under extreme conditions at hot springs in the ocean

SOLAR SCIENCE
Reports of Jupiter's Great Red Spot demise greatly exaggerated

Aquatic rover goes for a drive under the ice

NASA scientists confirm water vapor on Europa

NASA finds Neptune moons locked in 'Dance of Avoidance'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.