. 24/7 Space News .
SOLAR SCIENCE
Details of Solar Science Mission Revealed at UK Astronomy Meeting
by Staff Writers
London, UK (SPX) Jul 05, 2019

Three pairs of formation-flying coronagraphs make up the SULIS mission. With three viewpoints SULIS will reconstruct the 3D properties of coronal mass ejections from the Sun that cause space weather impacts on Earth. Credit: Dr Eamon Scullion Northumbria University Newcastle upon Tyne.

Named after a Celtic goddess of the Sun, SULIS is a UK-led solar science mission, designed to answer fundamental questions about the physics of solar storms. The mission consists of a cluster of small satellites and will carefully monitor solar storms using state-of-the-art UK technology, as well as demonstrating new technologies in space. Lead Investigator on the project, Dr. Eamon Scullion of Northumbria University, will reveal plans for the mission on Wednesday, 3 July at the Royal Astronomical Society's National Astronomy Meeting in Lancaster.

Once funded, the mission will study the nature of solar eruptions, and track huge magnetic clouds of charged gas as they travel at high speed on a collision course with Earth. "SULIS will apply high definition remote sensing in 3D to help space scientists finally understand what these magnetic clouds of charged gas are made of, how much matter they contain, what causes their eruption, how fast they are travelling and, most importantly, how damaging they could be to Earth," explains Scullion.

Solar storms occur when the Sun releases enormous bursts of energy as solar flares, launching huge magnetic clouds of charged gas, known as coronal mass ejections. It is the interaction of these charged particles with the Earth's atmosphere that results in aurora, but solar storms can also have a more significant impact on Earth, causing global mobile phone or GPS disruption, radio blackouts, and satellite failures.

The coronal magnetic field is one of the most important physical properties of the solar atmosphere and yet it is one of the least explored. SULIS will include instruments to directly measure the magnetic field of the solar corona for the first time, with three pairs of formation-flying coronagraphs in orbit around the Sun. The first pair will be put into Earth orbit, with the other two pairs to be positioned ahead of, and behind, Earth in its orbit for a mission lifetime of 10 years.

Severe space weather is included on the UK National Risk Register, meaning government departments including military, energy, civil aviation, and transport must plan for this risk. "Solar storms are unavoidable," says Scullion, "but with SULIS we will learn about their basic building blocks in order to more accurately forecast when the next 'big one' will arrive. Having advanced warnings will enable us to take steps to minimise the impact."

On 2 July 2019, SULIS Co-Investigator Dr. Huw Morgan, will be part of a team of solar scientists from Aberystwyth University visiting Chile to observe the total solar eclipse. The eclipse provides ideal conditions for testing a state-of-the-art compact hyperspectral imager, which is expected to become incorporated into the SULIS mission on one of satellite pairs. Dr. Morgan says, "The SULIS consortium are now awaiting the outcome of the eclipse observing run with high expectations for spectacular HD images of the solar corona."

SULIS is not only designed to be a space science mission, but also to demonstrate technology for precision alignment of small satellites flying in formation, and future communications.

Precision maneuvering in formation-flying is a challenge for satellite constellations and is crucial for maintaining a functioning coronagraph in space. The coronagraph is essentially an artificial eclipse created by one satellite in a pair eclipsing the Sun with respect to the view of the other satellite. This eclipsing is required in order to block out the bright light of the Sun surface in order to detect and measure the properties of the faint light coming only from the corona. SULIS will investigate the nature of the magnetic field in the corona through inspecting subtle changes in the properties of the coronal light itself.

The mission will also demonstrate the use of laser power transfer in space and laser communications in Low Earth Orbits (i.e., for both inter-satellite communications and satellite-to-Earth communications). This is essential for small satellites with instruments capable of recording vast amounts of data, which either require more efficient ways to store large volumes of data locally, or mechanisms for moving data off the satellites extremely rapidly to avoid hardware and data telemetry issues.

On the SULIS mission, one of the satellites in the formation-flying pair will be shadowed by the other, meaning that the partially eclipsed satellite will require some additional power. This will be done through a laser power exchange with the satellite that is in permanent sunlight in order to carry out all its functions.

The ability to transfer power to otherwise "dead" satellites could be highly useful for future small satellite cluster missions, increasing their longevity, and helping to manage the ever-growing space debris problem.

"We are excited to be developing a mission to expand the UK's role in solar physics," says Scullion. "The SULIS mission complements existing and proposed operational space weather missions from NASA and ESA and will help pave the way for future space weather instruments."


Related Links
Royal Astronomical Society
Solar Science News at SpaceDaily


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SOLAR SCIENCE
NASA selects missions to study our sun, its effects on space weather
Washington DC (SPX) Jun 24, 2019
NASA has selected two new missions to advance our understanding of the Sun and its dynamic effects on space. One of the selected missions will study how the Sun drives particles and energy into the solar system and a second will study Earth's response. The Sun generates a vast outpouring of solar particles known as the solar wind, which can create a dynamic system of radiation in space called space weather. Near Earth, where such particles interact with our planet's magnetic field, the space weath ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR SCIENCE
What a Space Vacation Deal

LightSail 2 phones home to mission control

Aerojet Rocketdyne Delivers Orion Auxiliary Engines for Artemis 2

Left in the Dust: Poll Reveals Americans Don't Believe US Leads in Space Exploration

SOLAR SCIENCE
ULA says malfunction of Russian RD-180 rocket engine occurred in 2018 during Atlas V launch

Rocket Lab successfully launches seventh Electron mission, deploys seven satellites to orbit

ESA expertise to support Portugal's launch program

Last Test Article for NASA's SLS Rocket Departs Michoud Assembly Facility

SOLAR SCIENCE
Mars 2020 Rover Gets a Super Instrument

Mars 2020 Rover's 7-Foot-Long Robotic Arm Installed

Inflatable Decelerator Will Hitch a Ride on the JPSS-2 Satellite

A chaos found only on Mars

SOLAR SCIENCE
China plans to deploy almost 200 AU-controlled satellites into orbit

Luokung and Land Space to develop control system for space and ground assets

Yaogan-33 launch fails in north China, Possible debris recovered in Laos

China develops new-generation rockets for upcoming missions

SOLAR SCIENCE
Israeli space tech firm hiSky expands to the UK

All-alectric Maxar 1300-Class comsat delivers broadcast services for Eutelsat customers

Newtec collaborates with QinetiQ, marking move into space sector

RBC Signals awarded SBIR Phase I contract by US Air Force

SOLAR SCIENCE
First taste of space for Spacebus Neo satellite

ThinKom completes technology validation on Telesat low-earth orbit satellite

ATLAS expands on-orbit customer base, bolsters global ground network

Space Weather causes years of radiation damage to satellites using electric propulsion

SOLAR SCIENCE
Planet Seeding and Panspermia

ALMA Pinpoints Formation Site of Planet Around Nearest Young Star

NASA's TESS Mission Finds Its Smallest Planet Yet

Cyanide Compounds Discovered in Meteorites May Hold Clues to the Origin of Life

SOLAR SCIENCE
Kuiper Belt Binary Orientations Support Streaming Instability Hypothesis

Study Shows How Icy Outer Solar System Satellites May Have Formed

Astronomers See "Warm" Glow of Uranus's Rings

Table salt compound spotted on Europa









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.