. 24/7 Space News .
PHYSICS NEWS
Designing new mirror materials for better gravitational-wave detection
by Kelso Harper for Kavli Institute News
Boston MA (SPX) Nov 06, 2020

Nicholas Demos (left) shows a mirror-testing apparatus to Satoshi Tanioka, a visiting student from Sokendai University.

Nicholas Demos, a physics graduate student, didn't travel a conventional path to MIT. A first-generation college student, Demos didn't have a clear trajectory in mind when he first attended California State University at Fullerton after high school. "It was kind of the path of least resistance," Demos says.

When his father passed away in the middle of his undergraduate studies, Demos left school to run the family business, Novatech Lighting Systems, which makes handheld spotlights. He ran the company for five years, but business didn't suit him, he says: "The pursuit of money wasn't motivating at all to me."

As soon as his brother graduated and could take over the business, Demos was ready to go back to school - this time with a clearer purpose. He chose to study physics, since he'd always excelled in math and science. Demos was the only student in his high school class to pass the AP calculus exam and even had what he calls a "side hustle" of building and selling computers out of his garage.

His renewed determination for academics paid off. After his first year back at CSU Fullerton, Demos' physics professor, Geoffrey Lovelace, asked him to join his lab. The following summer, Demos began researching gravitational waves, just as a more sensitive version of the Laser-Interferometer Gravitational Wave Observatory (LIGO) became operational.

"The detector was reaching a sensitivity where everyone thought it should work," says Demos, "Being on the cusp of a big discovery was exciting."

On Sept. 14, 2015, a little more than a year after Demos began his research, LIGO detected a gravitational wave for the very first time. It thrilled everyone in the small but growing field, including Demos. The ability to observe gravitational waves provides "a totally different way to look at the universe," says Demos. "It's a big step forward for astrophysics; there's potential for things we haven't even thought of appearing. A lot of unknown unknowns."

When Demos completed his undergraduate degree in 2017, he applied to MIT, hoping to continue working on LIGO. Matthew Evans, the MIT MathWorks Professor of Physics and Demos' current advisor, says he was immediately impressed with Demos' work. And according to Evans, Demos' old advisor told him, "Nick was the best undergraduate he'd ever had."

Demos measures mirrors
Whereas telescopes look for cosmic phenomena, LIGO listens. "LIGO is listening for the densest objects in the universe - neutron stars and black holes," Demos says.

When these massive bodies near each other, they fall into a collapsing orbit, spinning faster and faster, closer and closer, until they collide.

"What LIGO detects is this chirp - this faster and faster, louder and louder signal - that is like the sound of spacetime vibrating," Demos says.

These vibrations, or gravitational waves, travel vast distances through the universe, warping everything - stars, planets, people - in their path. What LIGO does is measure this stretching and squeezing of spacetime. "It's basically a big, four-kilometer ruler," Demos says.

To measure gravitational waves, a LIGO detector has dual four-kilometer vacuum chambers laid in an enormous "L" shape. Scientists split a beam of light and send it to the end of each chamber, where it bounces off of highly reflective mirrors and returns to the corner of the "L."

When a gravitational wave ripples through the Earth, it will stretch one arm of LIGO while squashing the other. The light, which has a fixed speed and won't warp with the rest of the world, then takes a different length of time to travel down each arm. The scientists can measure this difference to detect the wave.

The challenge is that the ripples caused by gravitational waves are minuscule since, despite appearances, gravity is a very weak force. In terms of the squashing and stretching, "we're talking about these tiny, fractional changes," says Demos, "roughly one-thousandth the size of a proton."

This means that everything in the LIGO experiment must be extremely precise and very still. Otherwise, the gravitational wave signals will be lost in a sea of noise. Unfortunately, some sources of noise are harder to eliminate than others.

"The surface of the mirror is made up of atoms, and these atoms are jiggling about," Demos says. "If you're trying to measure something that's smaller than a proton, that's a problem, because your ruler is jiggling about on both ends."

The noise from the movement of atoms, also called thermal noise, is nearly unavoidable - the motion only stops at the unreachable temperature of absolute zero. However, some materials have less of this thermal noise than others.

Demos' job is to design and test new mirror materials to find those with the lowest thermal noise. In fact, he is one of the few people in the world able to test these samples. Matthew Evans and Research Scientist Slawomir Gras have developed the only apparatus able to quickly test full mirror samples, as opposed to just a single layer or a few layers of the materials used to coat the mirrors.

"Any coating that LIGO wants to use will first be characterized by our experiment," Demos says.

The Evans lab is in the process of upgrading their setup to measure thermal noise across the surface of a sample, as opposed to only at a single point.

"This is a job which is really at the heart of progress in gravitational wave detection," Evans adds. "Nick's persistent determination to get things done has really made a big difference for us."

Demos makes math work with MATLAB
In September, Demos was one of a select group of students in the School of Science to receive a $70,000 fellowship from MathWorks, a software company that produces mathematical computing programs like MATLAB and Simulink.

"The MathWorks Fellowship is a big honor," says Demos, "It's a huge relief financially because I don't have to worry, my lab doesn't have to worry, and I'll be able to really pursue this."

It's particularly appropriate for Demos to win this fellowship, as he frequently uses MATLAB in his research. "He's gone through all of our analysis software in MATLAB and really refactored that code from the ground up," says Evans. He adds that Demos is very deserving of this award, but he's not worried about the recognition going to Demos' head.

"There's a certain humility in his approach to things, which is not something you always find."


Related Links
MIT Kavli Institute
The Physics of Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


PHYSICS NEWS
UMD astronomers find x-rays lingering years after landmark neutron star collision
College Park MD (SPX) Oct 13, 2020
It's been three years since the landmark detection of a neutron star merger from gravitational waves. And since that day, an international team of researchers led by University of Maryland astronomer Eleonora Troja has been continuously monitoring the subsequent radiation emissions to provide the most complete picture of such an event. Their analysis provides possible explanations for X-rays that continued to radiate from the collision long after models predicted they would stop. The study also re ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

PHYSICS NEWS
China's Mars probe completes third orbital correction

After 20 years, Glenn continues to support the ISS

Twenty years on Station leads to multiple advances on Earth

ISS to preserve cooperation, Roscosmos Head says on 20th anniversary of crewed operations

PHYSICS NEWS
Rocket Lab demos new Kick Stage for in-space maneuvers

Small rocket company Rocket Lab aims for orbital reusability

ESA signs first Boost! commercial space transportation contracts

Isar Aerospace signs contract with ESA as first German company under ESA C-STS

PHYSICS NEWS
Water on ancient Mars

Geologists simulate soil conditions to help grow plants on Mars

NASA's Perseverance Rover Is Midway to Mars

Sensors on Mars 2020 Spacecraft Answer Long-Distance Call From Earth

PHYSICS NEWS
China Focus: 18 reserve astronauts selected for China's manned space program

State-owned space giant prepares for giant step in space

China's Xichang launch center to carry out 10 missions by end of March

Eighteen new astronauts chosen for China's space station mission

PHYSICS NEWS
Marking five years of Hungary in ESA

Lift-off for new generation of space scientists

Kleos team complete final prep for Scouting Mission launch Nov 7

Globalsat Group successfully tests Iridium Edge Pro

PHYSICS NEWS
D-Orbit announces successful ORIGIN mission

SpacePath ships compact, lightweight high-power amplifiers for European SATCOM project

Sheer protection from electromagnetic radiation

Tunisian startup 3D prints solar-powered bionic hands

PHYSICS NEWS
Supersonic winds, rocky rains forecasted on lava planet

Model of multicellular evolution overturns classic theory

Checking the speed of spirals

Assessing the habitability of planets around old red dwarfs

PHYSICS NEWS
Where were Jupiter and Saturn born?

NASA's Webb To Examine Objects in the Graveyard of the Solar System

Lighting a Path to Find Planet Nine

The mountains of Pluto are snowcapped, but not for the same reasons as on Earth









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.