. 24/7 Space News .
ICE WORLD
Desert dust collected from glacier ice helps document climate change
by Staff Writers
Columbus OH (SPX) Nov 15, 2022

The ice researchers used in this study was collected from the Guliya Ice Cap in Northwestern Tibet, an area home to one of the largest atmospheric dust source regions in the Northern Hemisphere, second only to the Sahara Desert.

Researchers from The Ohio State University are using dust trapped in glacier ice in Tibet to document past changes in Earth's intricate climate system - and maybe one day help predict future changes.

Their findings suggest that the dust composition in samples collected from different areas and depths of the same glacier can vary greatly, a discovery that hints that a complete dust record could offer up more secrets than scientists realize.

Dust stirred up by strong winds can cause a host of chain reactions in the atmosphere, affecting everything from human health and marine biochemistry to the balance of carbon dioxide in the atmosphere. How these microparticles affect the surrounding atmosphere is largely dependent on their size, shape and chemical makeup.

In a new study, recently published in the Journal Geosciences, researchers worked to help understand how dust affects climate - and is affected by it - through examining dust particles locked inside ancient ice, or what Emilie Beaudon, co-author of the study and a senior research associate at the Byrd Polar and Climate Research Center, calls 'cryo-dust.'

"By looking at dust composition through the ice, we can extract information about Earth's environmental condition at the time the snow was deposited and the ice was formed," she said. "We might be able to learn if it was a relatively dry or wet period or try to infer where the dust originally came from, and thereby obtain information on past atmospheric influences."

But researchers need a lot of ice to be able to collect that data.

Ice cores, cylinders of ice drilled from glaciers and ice caps, have long been used as comprehensive archives of Earth's climate system because of how well-preserved they are. As layers of ice accumulate over seasons and years, aerosols accumulate within each new coating, eventually providing researchers with very detailed records of the planet's tumultuous climate history. With the help of these natural time capsules, scientists can learn about what the world looked like at the time, including aspects like greenhouse gas concentrations, as well as volcanic, solar and biological activity.

The ice researchers used in this study was collected from the Guliya Ice Cap in Northwestern Tibet, an area home to one of the largest atmospheric dust source regions in the Northern Hemisphere, second only to the Sahara Desert. Because the region is under the influence of westerly winds, much of the dust that it picks up gets blown toward big cities in East Asia, Beaudon said. For instance, in 2021, China experienced its largest dust storm in a decade as the storm forced entire cities to take shelter, eventually raising concerns from the scientific community about the effects climate change is having on the frequency and intensity of such events.

But scientists don't have enough data to help identify how Central Asian desert dust is transported over long distances, nor how it changes over time. Studying a dust record from a Tibetan ice core is one of the only ways to provide a long-term perspective on the Central Asian dust cycle, Beaudon said.

In 2015, a team of researchers from the United States and China helped drill for ice cores from different locations at the Guliya ice cap, before shipping these cores back to the lab at Ohio State. Beaudon's team analyzed two of the ice cores, investigating the area's dust record by studying microparticles collected on filters from melted ice, as well as those trapped in typical ice subsamples. Beaudon noticed that the encased dust wasn't uniform; instead, each deposit was an unlikely array of different colors, sizes and layers.

"That's how the idea of trying to determine where the dust was coming from emerged because there were already so many visual cues that highlighted their differences," Beaudon said.

Beaudon's team also sought to discern whether most of the particles present in the ice came from the Taklimakan desert near the Guliya ice cap, or if it was carried there from other far-away locations.

"What we wanted to prove with these preliminary samples is that there is actual variability in their geochemistry and mineralogy," she said. "We found that it's not all the same dust coming from the same desert, and even in the same glacier, you don't always have the same material."

Overall, the study notes that the particularly old Guliya glacial dust archive is a prime candidate for deeper exploration, suggesting that in using additional ice core samples to develop higher-resolution dust records, Beaudon's work opens up many research avenues, including studying the microbial populations that exist inside the ice and feed on the nutrients cryo-dust carries within it.

Eventually, Beaudon envisions her work helping to investigate the glacial records of planets beyond Earth. "My goal is to acquire a lot of expertise in cryo-dust," she said. "If there are ever ice cores drilled or samples taken from Mars or any other planet, I hope to study them."

Research Report:Aeolian Dust Preserved in the Guliya Ice Cap (Northwestern Tibet): A Promising Paleo-Environmental Messenger


Related Links
Ohio State University
Beyond the Ice Age


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ICE WORLD
Ice loss from Northeastern Greenland significantly underestimated
Kongens Lyngby, Denmark (SPX) Nov 10, 2022
Ice is continuously streaming off Greenland's melting glaciers at an accelerating rate, dramatically increasing global sea levels. New results published [DATE] in Nature indicate that existing models have underestimated how much ice will be lost during the 21st century. Hence, its contribution to sea-level rise will be significantly higher. By 2100, the Northeast Greenland Ice Stream will contribute six times as much to the rising sea level as previous models suggested, adding between 13,5 to 15,5 ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ICE WORLD
SmartSat CRC and NASA team up to collaborate on astronaut emergency communications

S.S. Sally Ride delivers experiments to International Space Station

NASA Moon rocket launch delayed again, this time by storm

First geostationary navigation receiver from Beyond Gravity will be sent to orbit

ICE WORLD
NASA views images, confirms discovery of Shuttle Challenger artifact

Hurricane causes only minor damage to Artemis rocket

Twitter chaos deepens as key executives quit

Piece of Challenger space shuttle found off Florida coast

ICE WORLD
Losing the Rhythm - Sols 3648-3649

Perseverance activities at Amalik outcrop

MAVEN observes Martian light show caused by major solar storm

Earth's oldest stromatolites and the search for life on Mars

ICE WORLD
Next-generation rocket for astronauts expected in 2027

Astronauts enter China's Mengtian lab module for first time

China completes in-orbit maneuver to complete Tiangong space station assembly

China's Mengtian lab module docks with space station combination

ICE WORLD
Rocket Lab to supply satellite separation systems for Tranche 1 Transport Layer vendors

Rocket Lab to launch HawkEye 360's Cluster 6 satellites in December

MDA selects Rocket Lab to supply satellite operations control center for the Globalstar constellation

Astra laying off 16% of workforce, honing focus on development

ICE WORLD
With new heat treatment, 3D-printed metals can withstand extreme conditions

Turning concrete into a clean energy source

New quantum phase discovered for developing hybrid materials

Satellogic completes investment in Officina Stellare

ICE WORLD
Early planetary migration can explain missing planets

Oldest planetary debris in our galaxy found from new study

Do you speak extra-terrestrial?

Starshade competition challenges students to block starlight for observing exoplanets

ICE WORLD
Mars and Jupiter moons meet

NASA studies origins of dwarf planet Haumea

NASA study suggests shallow lakes in Europa's icy crust could erupt

Sharpest Earth-based images of Europa and Ganymede reveal their icy landscape









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.