. | . |
Deep learning takes Saturn by storm by Staff Writers London, UK (SPX) Apr 30, 2019
A 'deep learning' approach to detecting storms on Saturn is set to transform our understanding of planetary atmospheres, according to UCL and University of Arizona researchers. The new technique, called PlanetNet, identifies and maps the components and features in turbulent regions of Saturn's atmosphere, giving insights into the processes that drive them. A study, published in Nature Astronomy, provides results from the first demonstration of the PlanetNet algorithm, which clearly shows the vast regions affected by storms, and that Saturn's dark storm clouds contain material swept up from the lower atmosphere by strong vertical winds. Developed by UCL and the University of Arizona researchers, PlanetNet was trained and tested using infrared data from the Visible and Infrared Mapping Spectrometer (VIMS) instrument on Cassini, a joint mission between NASA, the European Space Agency, and the Italian Space Agency. A dataset containing multiple, adjacent storms observed at Saturn in February 2008 was chosen to provide a range of complex atmospheric features to challenge PlanetNet's capabilities. Previous analysis of the dataset indicated a rare detection of ammonia in Saturn's atmosphere, in the form of an S-shaped cloud. The map produced through PlanetNet shows that this feature is a prominent part of a much larger upwelling of ammonia ice clouds around a central dark storm. PlanetNet identifies similar upwelling around another small storm, suggesting that such features are quite common. The map also shows pronounced differences between the centre of storms and the surrounding areas, indicating that the eye gives a clear view into the warmer, deep atmosphere. "Missions like Cassini gather enormous amounts of data but classical techniques for analysis have drawbacks, either in the accuracy of information that can be extracted or in the time they take to perform. Deep learning enables pattern recognition across diverse, multiple data sets," said Dr Ingo Waldmann (UCL Physics and Astronomy), lead author and Deputy Director of the UCL Centre for Space and Exoplanet Data. "This gives us the potential to analyse atmospheric phenomena over large areas and from different viewing angles, and to make new associations between the shape of features and the chemical and physical properties that create them." Initially, PlanetNet searches the data for signs of clustering in the cloud structure and gas composition. For areas of interest, it trims the data to remove uncertainties at the edges and runs a parallel analysis of the spectral and spatial properties. Recombining the two data-streams, PlanetNet creates a map that presents quickly and accurately the major components of Saturn's storms with unprecedented precision. PlanetNet's accuracy has been validated on Cassini data not included in the training phase. The whole dataset has also been rotated and resampled to create 'synthetic' data for further testing. PlanetNet has achieved over 90% classification accuracy in both test cases. "PlanetNet enables us to analyse much bigger volumes of data, and this gives insights into the large-scale dynamics of Saturn," said Professor Caitlin Griffith (University of Arizona), who co-authored this paper. "The results reveal atmospheric features that were previously undetected. PlanetNet can easily be adapted to other datasets and planets, making it an invaluable potential tool for many future missions."
NASA's Cassini Reveals Surprises with Titan's Lakes Pasadena CA (JPL) Apr 16, 2019 On its final flyby of Saturn's largest moon in 2017, NASA's Cassini spacecraft gathered radar data revealing that the small liquid lakes in Titan's northern hemisphere are surprisingly deep, perched atop hills and filled with methane. The new findings, published April 15 in Nature Astronomy, are the first confirmation of just how deep some of Titan's lakes are (more than 300 feet, or 100 meters) and of their composition. They provide new information about the way liquid methane rains on, evaporate ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |