. | . |
Deep Space Atomic Clock moves toward increased spacecraft autonomy by Staff Writers Washington DC (SPX) Jul 01, 2021
Designed to improve navigation for robotic explorers and the operation of GPS satellites, the technology demonstration reports a significant milestone. Spacecraft that venture beyond our Moon rely on communication with ground stations on Earth to figure out where they are and where they're going. NASA's Deep Space Atomic Clock is working toward giving those far-flung explorers more autonomy when navigating. In a new paper published in the journal Nature, the mission reports progress in their work to improve the ability of space-based atomic clocks to measure time consistently over long periods. Known as stability, this feature also impacts the operation of GPS satellites that help people navigate on Earth, so this work also has the potential to increase the autonomy of next-generation GPS spacecraft. To calculate the trajectory of a distant spacecraft, engineers send signals from the spacecraft to Earth and back. They use refrigerator-size atomic clocks on the ground to log the timing of those signals, which is essential for precisely measuring the spacecraft's position. But for robots on Mars or more distant destinations, waiting for the signals to make the trip can quickly add up to tens of minutes or even hours. If those spacecraft carried atomic clocks, they could calculate their own position and direction, but the clocks would have to be highly stable. GPS satellites carry atomic clocks to help us get to our destinations on Earth, but those clocks require updates several times a day to maintain the necessary level of stability. Deep space missions would require more stable space-based clocks. Managed by NASA's Jet Propulsion Laboratory in Southern California, the Deep Space Atomic Clock has been operating aboard General Atomic's Orbital Test Bed spacecraft since June 2019. The new study reports that the mission team has set a new record for long-term atomic clock stability in space, reaching more than 10 times the stability of current space-based atomic clocks, including those on GPS satellites.
When Every Nanosecond Counts One of the key goals of the Deep Space Atomic Clock mission was to measure the clock's stability over longer and longer periods, to see how it changes with time. In the new paper, the team reports a level of stability that leads to a time deviation of less than four nanoseconds after more than 20 days of operation. "As a general rule, an uncertainty of one nanosecond in time corresponds to a distance uncertainty of about one foot," said Eric Burt, an atomic clock physicist for the mission at JPL and co-author of the new paper. "Some GPS clocks must be updated several times a day to maintain this level of stability, and that means GPS is highly dependent on communication with the ground. The Deep Space Atomic Clock pushes this out to a week or more, thus potentially giving an application like GPS much more autonomy." The stability and subsequent time delay reported in the new paper is about five times better than what the team reported in the spring of 2020. This does not represent an improvement in the clock itself, but in the team's measurement of the clock's stability. Longer operating periods and almost a full year of additional data made it possible to improve the precision of their measurement. The Deep Space Atomic Clock mission will conclude in August, but NASA announced that work on this technology continues: the Deep Space Atomic Clock-2, an improved version of the cutting-edge timekeeper, will fly on the VERITAS (short for Venus Emissivity, Radio Science, InSAR, Topography, and Spectroscopy) mission to Venus. Like its predecessor, the new space clock is a technology demonstration, meaning its goal is to advance in-space capabilities by developing instruments, hardware, software, or the like that doesn't currently exist. Built by JPL and funded by NASA's Space Technology Mission Directorate (STMD), the ultra-precise clock signal generated with this technology could help enable autonomous spacecraft navigation and enhance radio science observations on future missions. "NASA's selection of Deep Space Atomic Clock-2 on VERITAS speaks to this technology's promise," said Todd Ely, Deep Space Atomic Clock principal investigator and project manager at JPL. "On VERITAS, we aim to put this next generation space clock through its paces and demonstrate its potential for deep space navigation and science."
Swiss watch expo switches to Shanghai after virtual debut Zurich (AFP) April 13, 2021 Geneva's international expo of fine watches switches to Shanghai on Wednesday for a physical version after staging an online edition to keep the prestigious fair going during the pandemic. The Salon International de la Haute Horlogerie, now restyled as Watches and Wonders, was cancelled last year due to the coronavirus crisis. This year, with Europe battling a third wave of the pandemic, the fair - one of the major annual gatherings for luxury watchmakers - opened online on April 7, closing on ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |