. 24/7 Space News .
Deep Impact: During and After Impact

Left set shows Comet July 4, and the right set July 6.
  • More images and detailed captions available here.

  • Palomar Mountain CA (SPX) Jul 25, 2005
    Astronomers using the Palomar Observatory's 200-inch Hale Telescope have been amazed by comet Tempel 1's behavior during and after its collision with the Deep Impact space probe.

    In the minutes just after the impact the comet was seen to increase its near-infrared brightness nearly fivefold. As the event progressed astronomers at Palomar were able to distinguish jets of material venting from the comet's nucleus that have persisted for days.

    Early results from the data, in images taken just minutes after impact, showed a possible plume of dust and gas extending outward some 320 km (200 miles) from the comet's center, roughly coinciding with the site of the probe's final demise.

    This apparent dust plume has persisted for several nights, allowing astronomers to watch the comet's slow rotation. The night after impact the plume was on the far side of the comet, but was visible again the next evening as the comet's rotation brought it back into view. Two days after impact, the plume was seen again, this time extending about 200 km (124 miles) from the comet's center.

    According to Bidushi Bhattacharya of the California Institute of Technology's (Caltech) Spitzer Science Center, "This could be indicative of an outburst of gas and dust still taking place near the region of the impact."

    "We are very excited by these results. It is a fabulous time to be studying comets," says James Bauer of the Jet Propulsion Laboratory (JPL). "It will be interesting to see how long the effects of the impact persist," he adds.

    The images of the comet, obtained by Bauer and Bhattacharya, were sharper than those from most ground-based telescopes because they used a technique known as adaptive optics. Adaptive optics allows astronomers to correct for the blurring of images caused by Earth's turbulent atmosphere, giving them a view that often surpasses those of smaller telescopes based in space.

    Using the adaptive-optics technique to improve an astronomer's view is generally only possible when a bright star is located near the object they want to study. On the night of impact there was no bright star close enough to the comet to use. Mitchell Troy, the adaptive-optics group lead and Palomar adaptive-optics task manager at JPL, worked with his team to make adaptive optics corrections anyway.

    "Through the dedicated efforts of the JPL and Caltech teams we were able to deploy a new sensor that was 25 times more sensitive then our normal sensor. This new sensor allowed us to correct for some of the atmosphere's distortions and significantly improve the view of the comet," says Troy. This improved view allowed astronomers to see the dust and ejected material moving out from the comet's surface immediately following the impact event and again days later.

    Earth-based observations from telescopes like the 200-inch at Palomar give astronomers an important perspective on how the comet is reacting to the impact, a perspective that cannot be achieved from the front-row seat of a fly-by spacecraft. Astronomers on the ground have the luxury of long-term observations that may continue to show changes in the comet for weeks to come.

    Collaborators on the observations include Paul Weissman (JPL), and the Palomar 200-inch crew. The Caltech-adaptive optics team is made up of Richard Dekany (team leader), Antonin Bouchez, Matthew Britton, Khanh Bui, Alan Morrissett, Hal Petrie, Viswa Velur and Bob Weber. The JPL Palomar adaptive-optics team includes Mitchell Troy (team leader), John Angione, Sidd Bikkannavar, Gary Brack, Steve Guiwits, Dean Palmer, Ben Platt, Jennifer Roberts, Chris Shelton, Fang Shi, Thang Trinh, Tuan Truong and Kent Wallace.

    Related Links
    Deep Impact at Caltech
    Astronomy at Caltech
    SpaceDaily
    Search SpaceDaily
    Subscribe To SpaceDaily Express



    Memory Foam Mattress Review
    Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
    XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


    NASA Announces Deep Impact Future Mission Status
    Washington (SPX) Jul 21, 2005
    As NASA's Deep Impact flyby spacecraft prepares to execute its sixth trajectory correction maneuver, program managers at agency headquarters in Washington are investigating future options.

    ---------------------------------------------------------
    New from Telescopes.com!

    It's new. And it's downright terrific!

    Celestron's CPC Schmidt-Cassegrain telescope is the scope you've been waiting for! It offers new alignment technology, advanced engineering, and bold new design at a new, low price!

    In fact, Celestron's Professional Computerized (CPC) scope with revolutionary SkyAlign Alignment Technology redefines everything that amateur astronomers are looking for. It offers quick and simple alignment, GPS technology, unsurpassed optical quality, ease of use, advanced ergonomics, enhanced computerization and, most important, affordability.

    Want to view M-31 tonight? One button takes you there!

    Shop for telescopes online at Telescopes.com! today!
    ------------------------------------------------------------







  • US House of Representatives Overwhelmingly Passes NASA Authorization Bill
  • A Trip to Mars Needs Waste
  • Zero Gravity Corporation Successfully Inaugurates ZERO-G Learning Lab
  • NG Appoints Douglas H. Young VP, Space Systems And CEV Program Manager

  • Spirit Scampering Up Husband Hill
  • NASA's New Mars Orbiter Will Sharpen Vision of Exploration
  • Interplanetary Whodunit: Methane On Mars
  • Mars Has Been In Deep Freeze For Past Four Billion Years, Study Shows

  • Russia Taps Space Market With Decommissioned Missiles
  • Space Adventures Announces Opening of Spaceport Development Office
  • Launch Of THAICOM 4 (iPSTAR) Delayed By Several Days
  • Astro-E2 Ready For July 6 Launch

  • Advanced Land Observing Satellite (ALOS) Launch Delay
  • Satellites And The City
  • EarthMap Solutions Launches YieldTrax
  • Methane's Impacts On Climate Change May Be Twice Previous Estimates

  • Charon's Occultation Of Star Oberseved For Second Time Only
  • Pluto's Moon - Rare Alignment Seen
  • Pluto Bound Spacecraft Shipped To Goddard For Pre-launch Tests
  • Planners Eye Next Stage Of New Horizons Pluto Mission

  • X-Ray Oscillations From Star Quake Provide Clues To Interior Of Neutron Stars
  • Mystery Compact Object Producing High Energy Radiation
  • Scientists Discover Mineral Comes From Ancient Supernova
  • Scientist Refines Cosmic Clock To Determine Age Of Milky Way

  • Human Service Mission To The International Lunar Observatories
  • A Giant Leap Towards The Moon
  • Spacedev Microsat To Travel Interplanetary Superhighway To The Moon
  • Abandoned Spaceships

  • Raytheon's Enhanced Paveway II Successfully Proves Extended Range
  • Raytheon Delivers Next Generation Anti-Jam GPS Sensor for F-35 Joint Strike Fighter
  • Rain Or Shine, The Garmin GPSMAP 376C Has You Covered
  • Garmin Introduces The StreetPilot i-Series

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement