. | . |
Decadal predictability of North Atlantic blocking and the NAO by Staff Writers Rome, Italy (SPX) Jul 27, 2020
Climate in different parts of the world is undergoing a warming trend, but also significant interdecadal variations that compensate, or exacerbate the former. These variations are associated not only with changes in the radiative forcing, but also to natural variability in the atmospheric and oceanic circulation patterns. Can multi-annual variations in the frequency of North Atlantic atmospheric blocking and mid-latitude circulation regimes be skillfully predicted? Recent advances in seasonal forecasting have shown that mid-latitude climate variability does exhibit significant predictability. Decadal predictions fill the gap between assessing long-term climate trends (climate projections) and predicting short-term climatic anomalies (seasonal forecasting), thus targeting near-term regional climatic anomalies with multi-annual lead time and responding to an increasingly needed service to society. A study recently published on the Nature Research Journal Climate and Atmospheric Science led by the CMCC Foundation (in particular, with the contribution of the CMCC scientists Panos Athanasiadis, lead author of the study, Alessio Bellucci and Stefano Tibaldi from CSP - Climate Simulations and Predictions Division) illustrates the latest breakthrough in the field of decadal predictions, with a special focus on the documented predictability for the North Atlantic Oscillation (NAO) and blocking in the North Atlantic. The authors made use of a large ensemble of decadal predictions and found remarkable skill in reproducing the observed multi-annual variations of wintertime blocking frequency over the North Atlantic and of the North Atlantic Oscillation (NAO) itself. Therefore, skillfully predicting the decadal fluctuations of blocking frequency and the NAO may be used in statistical predictions of near-term climate anomalies, and it provides a strong indication that impactful climate anomalies may also be predictable with improved dynamical models.
Research Report: "Decadal predictability of North Atlantic blocking and the NAO"
Methane emissions rise nine percent in decade Paris (AFP) July 14, 2020 Emissions of methane - a planet-warming gas several times more potent than carbon dioxide - have risen by nine percent in a decade driven by mankind's insatiable hunger for energy and food, a major international study concluded Wednesday. Methane (CH4) has a warming potential 28 times greater than CO2 over a 100-year period and its concentration in the atmosphere has more than doubled since the Industrial Revolution. Over a 20-year period, it is more than 80 times as potent. While there a ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |