. | . |
Dead star circled by light by Staff Writers Munich, Germany (SPX) Apr 10, 2018
Spectacular new pictures, created from images from both ground- and space-based telescopes, tell the story of the hunt for an elusive missing object hidden amid a complex tangle of gaseous filaments in the Small Magellanic Cloud, about 200 000 light-years from Earth. New data from the MUSE instrument on ESO's Very Large Telescope in Chile has revealed a remarkable ring of gas in a system called 1E 0102.2-7219, expanding slowly within the depths of numerous other fast-moving filaments of gas and dust left behind after a supernova. This discovery allowed a team led by Frederic Vogt, an ESO Fellow in Chile, to track down the first ever isolated neutron star with low magnetic field located beyond our own Milky Way galaxy. The team noticed that the ring was centred on an X-ray source that had been noted years before and designated p1. The nature of this source had remained a mystery. In particular, it was not clear whether p1 actually lies inside the remnant or behind it. It was only when the ring of gas - which includes both neon and oxygen - was observed with MUSE that the science team noticed it perfectly circled p1. The coincidence was too great, and they realised that p1 must lie within the supernova remnant itself. Once p1's location was known, the team used existing X-ray observations of this target from the [Chandra X-ray Observatory] - to determine that it must be an isolated neutron star, with a low magnetic field. In the words of Frederic Vogt: "If you look for a point source, it doesn't get much better than when the Universe quite literally draws a circle around it to show you where to look." When massive stars explode as supernovae, they leave behind a curdled web of hot gas and dust, known as a supernova remnant. These turbulent structures are key to the redistribution of the heavier elements - which are cooked up by massive stars as they live and die - into the interstellar medium, where they eventually form new stars and planets. Typically barely ten kilometres across, yet weighing more than our Sun, isolated neutron stars with low magnetic fields are thought to be abundant across the Universe, but they are very hard to find because they only shine at X-ray wavelengths. The fact that the confirmation of p1 as an isolated neutron star was enabled by optical observations is thus particularly exciting. Co-author Liz Bartlett, another ESO Fellow in Chile, sums up this discovery: "This is the first object of its kind to be confirmed beyond the Milky Way, made possible using MUSE as a guidance tool. We think that this could open up new channels of discovery and study for these elusive stellar remains." This research was presented in a paper entitled "Identification of the central compact object in the young supernova remnant 1E 0102.2-7219", by Frederic P. A. Vogt et al., in the journal Nature Astronomy.
Astronomers find 72 bright and fast explosions Liverpool, UK (SPX) Apr 03, 2018 Gone in a (cosmological) flash: a team of astronomers found 72 very bright, but quick events in a recent survey and are still struggling to explain their origin. Miika Pursiainen of the University of Southampton will present the new results on Tuesday 3 April at the European Week of Astronomy and Space Science. The scientists found the transients in data from the Dark Energy Survey Supernova Programme (DES-SN). This is part of a global effort to understand dark energy, a component driving an accel ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |