. 24/7 Space News .
STELLAR CHEMISTRY
Dark matter experiment finds no evidence of axions
by Staff Writers
Boston MA (SPX) Apr 08, 2019

file illustration only

Physicists from MIT and elsewhere have performed the first run of a new experiment to detect axions - hypothetical particles that are predicted to be among the lightest particles in the universe. If they exist, axions would be virtually invisible, yet inescapable; they could make up nearly 85 percent of the mass of the universe, in the form of dark matter.

Axions are particularly unusual in that they are expected to modify the rules of electricity and magnetism at a minute level. In a paper published in Physical Review Letters, the MIT-led team reports that in the first month of observations the experiment detected no sign of axions within the mass range of 0.31 to 8.3 nanoelectronvolts.

This means that axions within this mass range, which is equivalent to about one-quintillionth the mass of a proton, either don't exist or they have an even smaller effect on electricity and magnetism than previously thought.

"This is the first time anyone has directly looked at this axion space," says Lindley Winslow, principal investigator of the experiment and the Jerrold R. Zacharias Career Development Assistant Professor of Physics at MIT. "We're excited that we can now say, 'We have a way to look here, and we know how to do better!'"

Winslow's MIT co-authors include lead author Jonathan Ouellet, Chiara Salemi, Zachary Bogorad, Janet Conrad, Joseph Formaggio, Joseph Minervini, Alexey Radovinsky, Jesse Thaler, and Daniel Winklehner, along with researchers from eight other institutions.

Magnetars and munchkins
While they are thought to be everywhere, axions are predicted to be virtually ghost-like, having only tiny interactions with anything else in the universe.

"As dark matter, they shouldn't affect your everyday life," Winslow says. "But they're thought to affect things on a cosmological level, like the expansion of the universe and the formation of galaxies we see in the night sky."

Because of their interaction with electromagnetism, axions are theorized to have a surprising behavior around magnetars - a type of neutron star that churns up a hugely powerful magnetic field. If axions are present, they can exploit the magnetar's magnetic field to convert themselves into radio waves, which can be detected with dedicated telescopes on Earth.

In 2016, a trio of MIT theorists drew up a thought experiment for detecting axions, inspired by the magnetar. The experiment was dubbed ABRACADABRA, for the A Broadband/Resonant Approach to Cosmic Axion Detection with an Amplifying B-field Ring Apparatus, and was conceived by Thaler, who is an associate professor of physics and a researcher in the Laboratory for Nuclear Science and the Center for Theoretical Physics, along with Benjamin Safdi, then an MIT Pappalardo Fellow, and former graduate student Yonatan Kahn.

The team proposed a design for a small, donut-shaped magnet kept in a refrigerator at temperatures just above absolute zero. Without axions, there should be no magnetic field in the center of the donut, or, as Winslow puts it, "where the munchkin should be." However, if axions exist, a detector should "see" a magnetic field in the middle of the donut

After the group published their theoretical design, Winslow, an experimentalist, set about finding ways to actually build the experiment.

"We wanted to look for a signal of an axion where, if we see it, it's really the axion," Winslow says. "That's what was elegant about this experiment. Technically, if you saw this magnetic field, it could only be the axion, because of the particular geometry they thought of."

In the sweet spot
It is a challenging experiment because the expected signal is less than 20 atto-Tesla. For reference, the Earth's magnetic field is 30 micro-Tesla and human brain waves are 1 pico-
Tesla.

In building the experiment, Winslow and her colleagues had to contend with two main design challenges, the first of which involved the refrigerator used to keep the entire experiment at ultracold temperatures. The refrigerator included a system of mechanical pumps whose activity could generate very slight vibrations that Winslow worried could mask an axion signal.

The second challenge had to do with noise in the environment, such as from nearby radio stations, electronics throughout the building turning on and off, and even LED lights on the computers and electronics, all of which could generate competing magnetic fields.

The team solved the first problem by hanging the entire contraption, using a thread as thin as dental floss. The second problem was solved by a combination of cold superconducting shielding and warm shielding around the outside of the experiment.

"We could then finally take data, and there was a sweet region in which we were above the vibrations of the fridge, and below the environmental noise probably coming from our neighbors, in which we could do the experiment."

The researchers first ran a series of tests to confirm the experiment was working and exhibiting magnetic fields accurately. The most important test was the injection of a magnetic field to simulate a fake axion, and to see that the experiment's detector produced the expected signal - indicating that if a real axion interacted with the experiment, it would be detected. At this point the experiment was ready to go.

"If you take the data and run it through an audio program, you can hear the sounds that the fridge makes," Winslow says. "We also see other noise going on and off, from someone next door doing something, and then that noise goes away. And when we look at this sweet spot, it holds together, we understand how the detector works, and it becomes quiet enough to hear the axions."

Seeing the swarm
In 2018, the team carried out ABRACADABRA's first run, continuously sampling between July and August. After analyzing the data from this period, they found no evidence of axions within the mass range of 0.31 to 8.3 nanoelectronvolts that change electricity and magnetism by more than one part in 10 billion.

The experiment is designed to detect axions of even smaller masses, down to about 1 femtoelectronvolts, as well as axions as large as 1 microelectronvolts.

The team will continue running the current experiment, which is about the size of a basketball, to look for even smaller and weaker axions. Meanwhile, Winslow is in the process of figuring out how to scale the experiment up, to the size of a compact car - dimensions that could enable detection of even weaker axions.

"There is a real possibility of a big discovery in the next stages of the experiment," Winslow says. "What motivates us is the possibility of seeing something which would change the field. It's high-risk, high-reward physics."


Related Links
Massachusetts Institute of Technology
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Subaru Telescope helps find dark matter is not made up of tiny black holes
San Francisco CA (SPX) Apr 04, 2019
An international team of researchers has put a theory speculated by the late Stephen Hawking to its most rigorous test to date, and their results have ruled out the possibility that primordial black holes smaller than a tenth of a millimeter make up most of dark matter. Details of their study have been published in this week's Nature Astronomy. Scientists know that 85 per cent of the matter in the Universe is made up of dark matter. Its gravitational force prevents stars in our Milky Way from flyi ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
A decade-long quest to build an ecosystem in a room

Spinoff Book Highlights NASA Technology Everywhere

Three prototypes in space settlement challenge receive UAE support

NASA selects two new space tech research institutes for smart habitats

STELLAR CHEMISTRY
Russia Maintains High Quality of RD-180 Rocket Engines - ULA

Composite Overwrap 3D-Printed Rocket Thruster Endures Extreme Heat

NASA Achieves Rocket Engine Test Milestone Needed for Moon Missions

Northrop Grumman completes 2nd test of rocket motor for ULA Atlas V

STELLAR CHEMISTRY
ExoMars carrier module prepares for final pre-launch testing

Martian soil detox could lead to new medicines

NASA's MAVEN Uses Red Planet's Atmosphere to Change Orbit

Life on Mars?

STELLAR CHEMISTRY
China's commercial carrier rocket finishes engine test

China launches new data relay satellite

Super-powerful Long March 9 said to begin missions around 2030

China preparing for space station missions

STELLAR CHEMISTRY
Preserving heritage data at ESA

Forging the future

Spacecraft Repo Operations

Amazon working on internet-serving satellite network

STELLAR CHEMISTRY
Maxar and NASA complete Design Review for Restore-L On-Orbit Servicing Spacecraft Bus

ESA oversees teaching of Europe's next top solderers

Russia's new ISS modules will be shielded with fabrics used in body armour

Arralis announces 10W GaN-SiC MMIC high power amplifier for K-Band comms

STELLAR CHEMISTRY
NASA researchers catalogue all microbes and fungi on ISS

Building blocks of DNA and RNA could have appeared together before life began on Earth

Surviving A Hostile Planet

Exoplanet Under the Looking Glass

STELLAR CHEMISTRY
Europa Clipper High-Gain Antenna Undergoes Testing

Scientists to Conduct Largest-Ever Hubble Survey of the Kuiper Belt

Jupiter's unknown journey revealed

A Prehistoric Mystery in the Kuiper Belt









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.