Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Dark Matter Search Results Indicate First Hint Of Wimp-Like Signal
by Staff Writers
berkeley CA (SPX) Apr 17, 2013


Closeup of a next-generation 4-inch detector in its mount, currently being fabricated at Texas A and M University by high-energy physicist Rupak Mahapatra and his team for use in the Generation 2 (G2) experiment at SNOLab.

An international collaboration whose search for dark matter is powered by detectors being fabricated at Texas A and M University has for the first time observed a concrete hint of what physicists believe to be the particle behind dark matter and therefore nearly a quarter of the universe -- a WIMP, or weakly interacting massive particle.

Scientists with the international Super Cryogenic Dark Matter Search (SuperCDMS) experiment involving Texas A and M high-energy physicist Rupak Mahapatra are reporting a WIMP-like signal at the 3-sigma level, indicating a 99.8 percent chance -- or, in high-energy parlance, a hint of the mysterious substance dark matter that is believed to hold the cosmos together but to date has never been directly observed.

"In high-energy physics, a discovery is only claimed at 5-sigma or better," Mahapatra said. "So this is certainly very exciting, but not fully convincing by the standards. We just need more data to be sure. For now, we have to live with this tantalizing hint of one of the biggest puzzles of our time."

Notoriously elusive, WIMPs rarely interact with normal matter and therefore are difficult to detect. Scientists believe they occasionally bounce off, or scatter like billiard balls from, atomic nuclei, leaving behind a small amount of energy capable of being tracked by detectors deep underground, particle colliders such as the Large Hadron Collider at CERN and even instruments in space like the Alpha Magnetic Spectrometer (AMS) mounted on the International Space Station (ISS).

The CDMS experiment, located a half-mile underground at the Soudan mine in northern Minnesota and managed by the United States Department of Energy's Fermi National Accelerator Laboratory, has been searching for dark matter since 2003.

The experiment uses very sophisticated detector technology and advanced analysis techniques to enable cryogenically cooled (almost absolute zero temperature at -460 degrees F) germanium and silicon targets to search for the rare recoil of dark matter particles.

Mahapatra says the latest analysis represents comprehensive data gleaned from the largest exposure with silicon detectors during the CDMS-II operation, an earlier phase of the overall experiment involving more than 50 scientists from 18 international institutions.

"This result is from data taken a few years ago using silicon detectors manufactured at Stanford that are now defunct," Mahapatra said.

"Increased interest in the low mass WIMP region motivated us to complete the analysis of the silicon-detector exposure, which is less sensitive than germanium for WIMP masses above 15 gigaelectron-volts [one GeV is equal to a billion electron volts] but more sensitive for lower masses. The analysis resulted in three events, and the estimated background is 0.7 events."

In addition to being heavily involved in the data analysis, Mahapatra says the Texas A and M group performed the crucial calibration of the silicon detectors, guaranteeing that the signal would look the same, regardless in which of the eight detectors located within the mine it might appear.

While Mahapatra says Monte Carlo simulations weren't able to rule out statistical fluctuations as the cause of the backgrounds, the team believes said fluctuations would rarely produce a similar energy distribution, which they interpret instead as spin-independent scattering of WIMPs. And although he says the result is certainly encouraging and worthy of further investigation, he cautions it should not be considered a discovery.

"We are only 99.8 percent sure, and we want to be 99.9999 percent sure," Mahapatra said. "At 3-sigma, you have a hint of something. At 4-sigma, you have evidence. At 5-sigma, you have a discovery.

"In medicine, you can say you are curing 99.8 percent of the cases, and that's OK. When you say you've made a fundamental discovery in high-energy physics, you can't be wrong. Given the money involved -- $30 million in this case -- it has to be extremely precise. With a 99.8 percent chance, that means if you repeated the same experiment a few hundred times, there is one chance it can go wrong. We want one out of a million instead."

Using germanium detectors, the collaboration previously in 2010 reported detection of two events in the signal region and an estimated background of 0.9 events. They eventually concluded these events more likely were attributable to leakage of surface electrons rather than actual nuclear recoils.

For the past four years, Mahapatra and his Texas A and M team -- which includes his Department of Physics and Astronomy-based research group as well as collaborator Rusty Harris in the Department of Electrical Engineering -- have been developing the larger, more advanced detectors needed for the project's current phases, from SuperCDMS to the even more sophisticated GEODM (Germanium Observatory for Dark Matter) experiments.

They are developing both germanium and silicon detectors to create dual-threat devices that are much bigger, better and cheaper. He notes his laboratory's new 6-inch diameter silicon detectors represent a world-first in cryogenic detection and are approximately 30 times more sensitive than the individual silicon detectors behind this latest result.

"The industrial manufacturing and fabrication facility we have set up here at Texas A and M has enabled us to bring down the cost from $350,000 per kilogram to about $40,000 per kilogram," Mahapatra said. "We also have a 90 percent success rate, versus the previous 20 percent rate for the original silicon and germanium devices."

Mahapatra says the collaboration will continue to probe this WIMP sector using the SuperCDMS Soudan experiment's operating germanium detectors and is considering using silicon detectors in future experiments.

The collaboration's work -- beginning with CDMS and CDMS-II and continuing with SuperCDMS and GEODM -- is funded by the DOE and the National Science Foundation as well as the Natural Sciences and Engineering Research Council of Canada (NSERC).

"In addition to NSF funding and an early career research award from the DOE, this work would not have been possible without start-up support from Texas A and M University and the College of Science and roughly $2 million in equipment from Maximum Integrated Products, Inc., in Dallas," Mahapatra said.

"Additionally, the Mitchell Institute funds the postdoctoral fellow, Joel Sander, who is spearheading the effort to develop alternate next-generation detectors that are not only another order of magnitude cheaper and but can also run at easier cryogenic temperature, which is ideal for a ton-scale experiment on budget.

The goal of this funding was to take up high-risk, high-return research that normally does not get supported by traditional funding from federal funding agencies like DOE and NSF."

The SuperCDMS collaboration has detailed its full results in a paper published in arXiv that eventually will appear in Physical Review Letters.

.


Related Links
Super Cryogenic Dark Matter Search Experiment:
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Shining light on elusive dark matter
Paris (ESA) Apr 05, 2013
The antimatter hunter AMS-02 on the International Space Station is searching for the missing pieces of our Universe. The project's first results published are hinting at a new phenomenon and revealing more about the invisible 'dark matter'. AMS-02, the Alpha Magnetic Spectrometer, consists of seven instruments that monitor cosmic rays from space. Unprotected by Earth's atmosphere the instr ... read more


STELLAR CHEMISTRY
Characterizing The Lunar Radiation Environment

Russia rekindles Moon exploration program, intends setting up first human outposts there

Pre-existing mineralogy may survive lunar impacts

Lunar cycle determines hunting behaviour of nocturnal gulls

STELLAR CHEMISTRY
Accurate pointing by Curiosity

NASA Mars Orbiter Images May Show 1971 Soviet Lander

Opportunity is in position for solar conjunction at 'Cape York' on the rim of Endeavour Crater

NASA spacecraft may have spotted pieces of Soviet spacecraft on Mars

STELLAR CHEMISTRY
Testing Spacesuits in Antarctica, part 1

Obama's budget would boost science, health

Underwater for outer space

NASA Celebrates Four Decades of Plucky Pioneer 11

STELLAR CHEMISTRY
Shenzhou's Shadow Crew

Shenzhou 10 sent to launch site

China's Next Women Astronauts

Shenzhou 10 - Next Stop: Jiuquan

STELLAR CHEMISTRY
UH Engineering Researcher's Theories to be Tested Aboard ISS

Unmanned Russian space freighter leaves space station toward fiery end

Europe sets June 5 for launch of space freighter

Spooky action at a distance aboard the ISS

STELLAR CHEMISTRY
ILS Proton Launches Anik G1 for Telesat

Ukraine aims to accelerate space industry development

Payload integration is underway for Vega's second mission from the Spaceport

Ecuador to launch first homemade satellite

STELLAR CHEMISTRY
Can One Buy the Right to Name a Planet?

Retired Star Found With Planets And Debris Disc

The Great Exoplanet Debate

NASA Selects Explorer Investigations for Formulation

STELLAR CHEMISTRY
For the very first time, two spacecraft will fly in formation with millimeter precision

High pressure gold nanocrystal structure revealed

Scientists design new adaptive material inspired by tears

UC Research Demonstrates Why Going Green Is Good Chemistry




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement