![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Blaine Friedlander for Cornell News Ithaca NY (SPX) Jan 13, 2020
A comet once thought to be a quiet dirty snowball cruising through the solar system becomes quite active when seen up close. Photography from the Rosetta mission reveals dancing gravel, whirling icy debris and transient, movable "depressions" on the smooth terrain of Comet 67P/Churyumov-Gerasimenko (Comet 67P). Alex Hayes '03, M.Eng. '03, associate professor of astronomy, presented the research at the American Geophysical Union's Fall Meeting Dec. 10. Hayes described how the process of sublimation, which drives a phenomenon known as scarp migration, can carve up comets and other worlds across the universe. He and his colleagues summarized their findings in a paper, "Migrating Scarps as a Significant Driver for Cometary Surface Evolution," published in Geophysical Research Letters (September 2019). Sam Birch, Ph.D. '17, a postdoctoral researcher in astronomy and the lead author of the published work, said: "We expected that the rocky gravel material of the smooth terrains - terrain that covers half the comet - to be inert and devoid of ice. But these regions retained a lot of ice and were surprisingly the most active parts of the comet. We caught this movement in the act and we have now developed a model for how this material can erode seasonally." Shaped like a barbell, with two lobes and a neck, one of the largest smooth terrain deposits is on its neck, in a region on the comet called Hapi. As the comet speeds through the solar system at 84,000 miles per hour, it returns to rendezvous with the sun every 6.45 years. During this return, the sun heats the Hapi region for just a few months, forcing it to shed its icy material. The Rosetta probe that captured images of the shedding process was launched in 2004, by the European Space Agency, in partnership with the Jet Propulsion Lab, in Pasadena, California. The spacecraft caught up with the comet and accompanied it on an inbound leg to the sun a decade later, in 2014, when it snapped close-up surface images for more than two years. As the comet gets closer to the sun, changes on the comet's surface begin to emerge. They start out looking like divots on a golf course. "They're just little holes, like a Nike swoosh," Birch said. "And they expand and grow, and they start sweeping across the entire Hapi region and remove a whole layer of material." Hayes told his fellow scientists that the processes seen on the comet are familiar on Earth. Much like ocean waves carve out grassy sections of beach, leaving a sandy overhang, icy jet streams carve out the comet. "The Rosetta mission really changed the game. Now we can actually apply principles of geology in ways we hadn't been able to before for comets and other small bodies," said Birch. Rosetta acquired substantial data regarding 67P's surface changes on daily and monthly time scales. "This is just the beginning," said Hayes. "The Rosetta mission has enabled the emergence of a new field in small body geology. For the first time, we can interrogate comet surfaces at the scales necessary to resolve the processes that drive surface evolution. I look forward to seeing what else the data can show us." The other Cornell researchers who co-wrote the paper are research associate Paul Corlies, Ph.D. '19, and Steve Squyres, '78, Ph.D. '81, professor emeritus of astronomy.
Research Report: "Migrating Scarps as a Significant Driver for Cometary Surface Evolution"
![]() ![]() Interstellar comet 2I Borisov swings past Sun Baltimore MD (SPX) Dec 13, 2019 When astronomers see something in the universe that at first glance seems like one-of-a-kind, it's bound to stir up a lot of excitement and attention. Enter comet 2I/Borisov. This mysterious visitor from the depths of space is the first identified comet to arrive here from another star. We don't know from where or when the comet started heading toward our Sun, but it won't hang around for long. The Sun's gravity is slightly deflecting its trajectory, but can't capture it because of the shape of its orbi ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |