|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
|
![]() |
![]() by Staff Writers Leicester, UK (SPX) Oct 20, 2014
Space scientists at the University of Leicester have detected a curious signal in the X-ray sky - one that provides a tantalising insight into the nature of mysterious Dark Matter. The Leicester team has found what appears to be a signature of 'axions', predicted 'Dark Matter' particle candidates - something that has been a puzzle to science for years. In a study being published in the Monthly Notices of the Royal Astronomical Society, the University of Leicester scientists describe their finding of a signal which has no conventional explanation. As first author Professor George Fraser, who sadly died in March of this year, wrote: "The direct detection of dark matter has preoccupied Physics for over thirty years." Dark Matter, a kind of invisible mass of unknown origin, cannot be seen directly with telescopes, but is instead inferred from its gravitational effects on ordinary matter and on light. Dark Matter is believed to make up 85% of the matter of the Universe. "The X-ray background - the sky, after the bright X-ray sources are removed - appears to be unchanged whenever you look at it," explained Dr. Andy Read, also from the University of Leicester Department of Physics and Astronomy and now leading the paper. "However, we have discovered a seasonal signal in this X-ray background, which has no conventional explanation, but is consistent with the discovery of axions." This result was found through an extensive study of almost the entire archive of data from the European Space Agency's X-ray observatory, XMM-Newton, which will celebrate its 15th year in orbit this December. Previous searches for axions, notably at CERN, and with other spacecraft in Earth orbit, have so far proved unsuccessful. As Professor Fraser explains in the paper: "It appears plausible that axions - Dark Matter particle candidates - are indeed produced in the core of the Sun and do indeed convert to X-rays in the magnetic field of the Earth." It is predicted that the X-ray signal due to axions will be greatest when looking through the sunward side of the magnetic field because this is where the field is strongest. Dr. Read concludes: "These exciting discoveries, in George's final paper, could be truly ground-breaking, potentially opening a window to new physics, and could have huge implications, not only for our understanding of the true X-ray sky, but also for identifying the Dark Matter that dominates the mass content of the cosmos." President of the Royal Astronomical Society Professor Martin Barstow, who is Pro-Vice-Chancellor, Head of the College of Science and Engineering and Professor of Astrophysics and Space Science at the University of Leicester said: "This is an amazing result. If confirmed, it will be first direct detection and identification of the elusive dark matter particles and will have a fundamental impact on our theories of the Universe."
Related Links University of Leicester Stellar Chemistry, The Universe And All Within It
|
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |