24/7 Space News
STELLAR CHEMISTRY
Crater 2's Unique Characteristics Explained by Self-Interacting Dark Matter
illustration only
Crater 2's Unique Characteristics Explained by Self-Interacting Dark Matter
by Clarence Oxford
Los Angeles CA (SPX) Jun 12, 2024

Crater 2, located approximately 380,000 light years from Earth, is one of the largest satellite galaxies of the Milky Way. Extremely cold and with slow-moving stars, Crater 2 has low surface brightness. How this galaxy originated remains unclear.

"Since its discovery in 2016, there have been many attempts to reproduce Crater 2's unusual properties, but it has proved very challenging," said Hai-Bo Yu, a professor of physics and astronomy at the University of California, Riverside, whose team now offers an explanation for Crater 2's origin in a paper published in The Astrophysical Journal Letters.

A satellite galaxy is a smaller galaxy that orbits a larger host galaxy. Dark matter makes up 85% of the universe's matter, and it can form a spherical structure under the influence of gravity called a dark matter halo. Invisible, the halo permeates and surrounds a galaxy like Crater 2. The fact that Crater 2 is extremely cold indicates its halo has a low density.

Yu explained that Crater 2 evolved in the tidal field of the Milky Way and experienced tidal interactions with the host galaxy, similar to how Earth's oceans experience tidal forces due to the gravity of the Moon. In theory, the tidal interactions can reduce the density of the dark matter halo.

However, the latest measurements of the orbit of Crater 2 around the Milky Way suggest the strength of the tidal interactions is too weak to lower the satellite galaxy's dark matter density to be consistent with its measurements - if dark matter is made of cold, collisionless particles, as expected from the prevailing cold dark matter theory, or CDM.

"Another puzzle is how Crater 2 could have a large size, as the tidal interactions would reduce the size when the satellite galaxy evolves in the tidal field of the Milky Way," Yu said.

Yu and his team invoke a different theory to explain Crater 2's properties and origin. Called self-interacting dark matter, or SIDM, it can compellingly explain diverse dark matter distributions. It proposes that dark matter particles self-interact through a dark force, strongly colliding with one another close to the center of a galaxy.

"Our work shows that SIDM can explain the unusual properties of Crater 2," Yu said. "The key mechanism is that dark matter self-interactions thermalize the halo of Crater 2 and produce a shallow density core, that is, the dark matter density is flattened at small radii. In contrast, in a CDM halo, the density would increase sharply toward the center of the galaxy."

According to Yu, in SIDM, a relatively small strength of tidal interactions, consistent with what can be expected from measurements of Crater 2's orbit, is sufficient to lower Crater 2's dark matter density, consistent with observations.

"Importantly, the galaxy size also expands in a SIDM halo, which explains Crater 2's large size," Yu said. "Dark matter particles are just more loosely bound in a cored SIDM halo than in a 'cuspy' CDM halo. Our work shows that SIDM is better than CDM at explaining how Crater 2 originated."

Yu was joined in the study by Daneng Yang of UCR, and Xingyu Zhang and Haipeng An of Tsinghua University in China.

Yu's research was supported by the John Templeton Foundation and the U.S. Department of Energy.

Research Report:Self-interacting dark matter interpretation of Crater II

Related Links
University of California - Riverside
Stellar Chemistry, The Universe And All Within It

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
STELLAR CHEMISTRY
Earth's Climate May Have Been Affected by Interstellar Clouds 2 Million Years Ago
Boston MA (SPX) Jun 10, 2024
Around two million years ago, Earth experienced multiple ice ages, coinciding with significant climatic changes. Scientists propose that these ice ages were caused by factors such as the planet's tilt, rotation, plate tectonics, volcanic eruptions, and atmospheric carbon dioxide levels. A new study suggests that the sun's position in the galaxy could also have influenced Earth's climate. In a paper published in Nature Astronomy, astrophysicist Merav Opher, a professor at Boston University and fell ... read more

STELLAR CHEMISTRY
NASA and Boeing Advance Starliner Tests with Crew at Space Station

Human bodies mostly recover from space, tourist mission shows

Ohio State students to test space food solutions for NASA

US and Germany double down on space exploration

STELLAR CHEMISTRY
Ariane 6 to launch RAMI Deployer for interplanetary missions

FAA seeks public input on SpaceX Starship's environmental impact in Florida

European Consortium Receives euro 15M for Inflatable Heat Shield Development

Boeing Starliner spacecraft springs more leaks on way to ISS

STELLAR CHEMISTRY
Water frost discovered on Mars' tallest volcanoes

Frost discovered on top of giant Mars volcanoes

NASA Observes Mars Illuminated During Major Solar Storm

New analysis suggests lack of subglacial lake on Mars

STELLAR CHEMISTRY
Hainan Launch Center Completes Construction for First Mission

Ten make the cut for China's fourth batch of astronauts

China announces first astronaut candidates from Hong Kong, Macau

China sees commercial sector as next frontier in US space race

STELLAR CHEMISTRY
Apex secures $95M in Series B Funding to Scale Satellite Bus Production

Satellite megaconstellations could impact ozone hole recovery

Yahsat Contracts Airbus for New Al Yah Satellites

Fired SpaceX workers sue Elon Musk over workplace abuses

STELLAR CHEMISTRY
Blue Canyon to supply spacecraft buses for NASA's PolSIR mission

10 Benefits of Using 360Learning for Your Company's Learning Needs

Where is the Best Place to Buy Used Books?

Security considerations in flight launcher software

STELLAR CHEMISTRY
Laser tests reveal new insights into key mineral for super-Earths

NASA and ESA explore habitability of exoplanets with Chandra and XMM-Newton

NASA satellite detects smaller object in black hole pair for the first time

ISS 90th spacewalk will retreive microorganisms from exterior of space station

STELLAR CHEMISTRY
Understanding Cyclones on Jupiter Through Oceanography

Unusual Ion May Influence Uranus and Neptune's Magnetic Fields

NASA's Europa Clipper Arrives in Florida for Launch Preparation

New Earth-Based Telescope Images of Jupiter's Moon Io Match Spacecraft Quality

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.