. 24/7 Space News .
PHYSICS NEWS
Cramming it all into three hundred and thirty seconds of microgravity
by Staff Writers
Berlin, Germany (SPX) May 27, 2021

MAPHEUS 11 on the launch pad

On 24 May 2021, three experiments from the German Aerospace Center (Deutsches Zentrum fur Luft- und Raumfahrt; DLR) set off on their short journey into microgravity and back again. The DLR sounding rocket MAPHEUS 11 lifted off from the Esrange Space Center in northern Sweden and carried the materials science experiments MARS, X-RISE and SOMEX to an altitude of 221 kilometres. In the 15 minutes between launch and landing, the payloads followed a parabolic path after the propulsion systems were jettisoned.

This allowed five and a half minutes of microgravity to carry out the experiments. After the flight, the experiments were recovered by helicopter. On the ground, a team from the DLR Institute of Materials Physics in Space followed the action with their 'fingers crossed'. After all, in addition to the acquisition of scientific knowledge, there is much passion invested in each of the three experiments.

MARS - how does metal-based 3D printing work in space?
In 3D printing - also referred to as additive manufacturing - powdered material is applied layer by layer until a three-dimensional component is created. In contrast to conventional processes, in which a component is milled out of a block, 3D printing has several advantages. It is flexible and fast, very complex shapes can be created and there is little material waste.

"These advantages also make additive manufacturing processes interesting for space applications in reduced gravity, for example on the Moon or Mars, or in microgravity during a space flight," explains Andreas Meyer, Head of the DLR Institute of Materials Physics in Space. The few minutes of experimentation time during the flight were enough to print a first small component.

"The MARS experiment is a first in this field. We are laying the foundations so that space missions can produce larger parts later. The structures required by future missions may be manufactured on site in space, such as on orbital platforms, which would considerably reduce the transport effort from Earth to space," Meyer explains. The 'Metal-based Additive Manufacturing for Space and Microgravity Applications' (MARS) experiment focuses on special metal alloys.

They can be used to produce components with very advantageous properties. These include, above all, very high strength and corrosion resistance. For the flight on MAPHEUS 11, the DLR Institute developed a compact rocket payload based on a new process developed by the German Federal Institute for Materials Research and Testing (Bundesanstalt fur Materialforschung und -prufung; BAM). The payload carried out the additive manufacturing process fully automatically in microgravity during the flight.

X-RISE - better understanding diffusion in liquid metal alloys
Using the X-Ray Investigation in Space Environment (X-RISE) experiment, DLR researchers want to understand the fundamental processes of atomic transport and diffusion in metallic liquids. Two miniaturised (shear-cell) furnaces melted aluminium-germanium and aluminium-indium alloys for this purpose.

A special X-ray system then acquired images in real time during the diffusion process. With the help of these images, the scientists will be able study the movement of the atoms in the liquid metals.

"Diffusion is an important parameter for many processes in materials science, including the examination of material structures. On Earth, gravity-driven flows often interfere with experiments on diffusion. In microgravity, on the other hand, we get a more accurate picture of the processes," explains Meyer. The X-RISE experiment was in operation for the fifth time on MAPHEUS 11.

Previous experiments have investigated, among other things, the solidification behaviour of metallic alloys, microstructure formation and the dendritic growth of crystal structures in aluminium-germanium alloys.

"With experiments in X-RISE, we can understand diffusion in liquids, confirm models for the solidification of alloys and verify the results of our laboratory experiments on Earth." Meyer summarises. Among other things, these results can help to optimise industrial casting processes.

SOMEX - universal light scattering laboratory for the study of soft matter
With the SOft Matter EXperiments (SOMEX) instrument, the DLR Institute of Materials Physics in Space has developed a universal platform for studying soft matter in microgravity. Soft matter is understood to be two phase systems that are between the physical states of solid and liquid.

With SOMEX, the DLR team has succeeded for the first time in realising an experimental setup that, despite its small volume, offers plenty of space and the possibility to study experiments using a large range of optical methods.

The SOMEX module is pressure-tight and designed for several flights into space. In addition, the samples, some of which are very sensitive, can be easily integrated into the module until shortly before launch using the specially designed quick-release fastener.

Static and dynamic light scattering, as well as differential dynamic microscopy, were used in flight for the first time on MAPHEUS 11. An epifluorescence microscope is under development. This will open up a wide range of applications for SOMEX.

On the successful first SOMEX flight, experiments were carried out to gain a fundamental understanding of the scattering physics of granular matter. In addition, the dynamics in a model system for self-propelled micro-floats were investigated. "In the Earth laboratory, buoyancy and sedimentation effects strongly distort the results. Compared with theoretical predictions, the SOMEX experiments enable new insights into the structure and dynamics of such systems in both cases," Andreas Meyer is pleased to report.


Related Links
DLR Institute of Materials Physics in Space
The Physics of Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


PHYSICS NEWS
NASA Marshall team soars to success in microgravity
Huntsville AL (SPX) May 20, 2021
No force - including gravity - could hold a team of NASA researchers down in their quest for a scientific breakthrough to benefit life on Earth and in space. Scientists from NASA's Marshall Space Flight Center in Huntsville, Alabama, completed two parabolic flights April 28 and 29 to test modifications to a payload called the ring-sheared drop. "This demonstration proved that the modified hardware is capable of deploying and pinning each of the protein solutions that will be used in an exper ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

PHYSICS NEWS
Inhabiting 21st-century science fiction

When will the first baby be born in space?

Highest bid for Blue Origin's maiden voyage $2.6 million and climbing

Back to the space cradle

PHYSICS NEWS
Virgin Galactic completes successful space flight

Roscosmos shows design of future nuclear-powered spacecraft

Merida Aerospace plans to begin rocket test launches in 2021

NASA fires up fourth RS-25 engine test

PHYSICS NEWS
China's Zhurong rover moves onto Martian surface to begin scientific operations

China's first Mars rover starts exploring red planet

Salts could be important piece of Martian organic puzzle

New ExoMars parachute ready for high altitude drop

PHYSICS NEWS
China postpones launch of robotic cargo spacecraft

Space station core module in orbit to prep for next stage of construction

China postpones launch of rocket carrying space station supplies

China's core space station module Tianhe completes in-orbit tests

PHYSICS NEWS
SES Prices EUR 625 Million Hybrid Bond Offering

Iridium makes strategic investment in DDK Positioning for enhanced GNSS accuracy

More than 3,000 jobs created as space sector grows across the UK

Euroconsult opens Australian office to help grow local space industry

PHYSICS NEWS
Alpha Data Launches new Space Development Kit

Xplore opens satellite manufacturing facility to advance satellite production

Astroscale UK to develop space debris removal technology innovations with OneWeb

Air Force debuts virtual command and control platform

PHYSICS NEWS
Origins of life researchers develop a new ecological biosignature

Shrinking planets could explain mystery of universe's missing worlds

Alien radioactive element prompts creation rethink

Coldplay beam new song into space in chat with French astronaut

PHYSICS NEWS
Deep water on Neptune and Uranus may be magnesium-rich

Juice arrives at ESA's technical heart

New Horizons reaches a rare space milestone

New research reveals secret to Jupiter's curious aurora activity









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.