|
. | . |
|
by Staff Writers Washington DC (SPX) Jun 09, 2015
Human influence on the natural world is widely acknowledged to have reached an unprecedented scale. Likewise, changes in natural systems have the potential to alter human behaviors, creating complex system interactions. These dynamics can be understood using the conceptual framework of coupled human and natural systems, or CHANS. In an article published in the June issue of BioScience, a cross-disciplinary group of researchers, led by Jiquan Chen, of Michigan State University and Nanjing University of Information Science and Technology, used the CHANS concept to examine the dynamics at play that affected livestock rearing between 1980 and 2010 on the Mongolian Plateau. According to the authors, CHANS research is particularly useful because biophysical and socioeconomic systems "interact with one another... yielding emergent behaviors for each system." The Mongolian Plateau presents a unique opportunity to apply the concept, because it comprises two jurisdictions with similar ecological systems but contrasting socioeconomic and political systems. The researchers combined economic measures, such as gross domestic product, with a measure of ecosystem productivity derived from satellite data. Although both Mongolia, an independent country, and Inner Mongolia, an autonomous region within China, have been subject to urbanization in recent years, the causes are different. In Inner Mongolia, it has largely been driven by improved job opportunities in cities, whereas in Mongolia, a series of policy-driven incentives have encouraged herdsmen to abandon pastoral livelihoods. Chen and colleagues write that "these economy- and policy-driven processes will likely continue to produce significant consequences for land-use change in rural landscapes, with consequent effects on ecosystem productivity and related services." Livestock production increased more in relation to ecosystem productivity in Inner Mongolia during the period examined, probably because livestock feed more on purchased fodder there. Further work on the dynamically interacting subsystems that drive CHANS will be needed, argue the authors, especially if the aim is to inform policymaking decisions "that support adaptation to changing climatic and economic conditions." This article is part of a BioScience Special Section on CHANS.
Related Links American Institute of Biological Sciences Tectonic Science and News
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |