24/7 Space News
CLIMATE SCIENCE
Could space dust help protect the earth from climate change?
Simulated stream of dust launched between Earth and the Sun. This dust cloud is shown as it crosses the disk of the Sun, viewed from Earth. Streams like this one, including those launched from the Moon's surface, can act as a temporary sunshade.
Could space dust help protect the earth from climate change?
by Staff Writers
Boston MA (SPX) Feb 16, 2023

On a cold winter day, the warmth of the sun is welcome. Yet as humanity emits more greenhouse gases, the Earth's atmosphere traps more and more of the sun's energy, which steadily increases the Earth's temperature. One strategy for reversing this trend is to intercept a fraction of sunlight before it reaches our planet.

For decades, scientists have considered using screens or other objects to block just enough of the sun's radiation - between 1 or 2 percent - to mitigate the effects of global warming. Now, a new study led by scientists at the Center for Astrophysics | Harvard and Smithsonian and the University of Utah explores the potential of using dust to shield sunlight.

The paper, published in the journal PLOS Climate, describes different properties of dust particles, quantities of dust and the orbits that would be best suited for shading Earth. The team found that launching dust from Earth to a way station at the "Lagrange Point" between Earth and the sun would be most effective but would require an astronomical cost and effort.

The team proposes moondust as an alternative, arguing that lunar dust launched from the moon could be a low-cost and effective way to shade the Earth.

"It is amazing to contemplate how moon dust - which took over four billion years to generate - might help slow the rise in the Earth's temperature, a problem that took us less than 300 years to produce," says study co-author Scott Kenyon of the Center for Astrophysics.

The team of astronomers applied a technique used to study planet formation around distant stars - their usual research focus - to the lunar dust concept. Planet formation is a messy process that kicks up astronomical dust, which forms rings around host stars. These rings intercept light from the central star and re-radiate it in a way that can be detected.

"That was the seed of the idea; if we took a small amount of material and put it on a special orbit between the Earth and the sun and broke it up, we could block out a lot of sunlight with a little amount of mass," says Ben Bromley, professor of physics and astronomy at the University of Utah and lead author for the study.

Casting a shadow
According to the team, a sunshield's overall effectiveness would depend on its ability to sustain an orbit that casts a shadow on Earth. Sameer Khan, Utah undergraduate student and study co-author, led the initial exploration into which orbits could hold dust in position long enough to provide adequate shading.

"Because we know the positions and masses of the major celestial bodies in our solar system, we can simply use the laws of gravity to track the position of a simulated sunshield over time for several different orbits," says Khan.

Two scenarios were promising. In the first scenario, the authors positioned a space station platform at the L1 Lagrange point, the closest point between Earth and the sun where the gravitational forces are balanced. Objects at Lagrange points tend to stay along a path between the two celestial bodies, which is why the James Webb Space Telescope (JWST) is located at L2, a Lagrange point on the opposite side of the Earth.

In computer simulations, the researchers shot particles from the platform to the L1 orbit, including the position of Earth, the sun, the moon, and other solar system planets, and tracked where the particles scattered. The authors found that when launched precisely, the dust would follow a path between Earth and the sun, effectively creating shade, at least for a while. The dust was easily blown off course by the solar winds, radiation, and gravity within the solar system. The team concludes that any L1 space station platform would need to create an endless supply of new dust batches to blast into orbit every few days after the initial spray dissipates.

"It was rather difficult to get the shield to stay at L1 long enough to cast a meaningful shadow. This shouldn't come as a surprise, though, since L1 is an unstable equilibrium point," Khan says. "Even the slightest deviation in the sunshield's orbit can cause it to rapidly drift out of place, so our simulations had to be extremely precise."

In the second scenario, the authors shot lunar dust from a platform on the surface of the moon towards the sun. They found that the inherent properties of lunar dust were just right to effectively work as a sunshield. The simulations tested how lunar dust scattered along various courses until they found excellent trajectories aimed toward L1 that served as an effective sunshield.

The results were welcome news, the team says, because much less energy is needed to launch dust from the moon than Earth. This is important because the amount of dust required for a solar shield is large, comparable to the output of a big mining operation here on Earth.

Kenyon says, "It is astounding that the Sun, Earth, and Moon are in just the right configuration to enable this kind of climate mitigation strategy."

Just a moonshot?
The authors stress that their new study only explores the potential impact of this strategy, rather than evaluate whether these scenarios are logistically feasible.

"We aren't experts in climate change, or the rocket science needed to move mass from one place to the other. We're just exploring different kinds of dust on a variety of orbits to see how effective this approach might be. We do not want to miss a game changer for such a critical problem," says Bromley.

One of the biggest logistical challenges - replenishing dust streams every few days - also has an advantage. The sun's radiation naturally disperses the dust particles throughout the solar system, meaning the sunshield is temporary and particles do not fall onto Earth. The authors assure that their approach would not create a permanently cold, uninhabitable planet, as in the science fiction story, "Snowpiercer."

Research Report:Dust as a solar shield

Related Links
Center for Astrophysics | Harvard and Smithsonian
Climate Science News - Modeling, Mitigation Adaptation

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
CLIMATE SCIENCE
Climate: Could moon dust keep Earth cool?
Paris (AFP) Feb 8, 2023
Whether out-of-the-box thinking or a sign of desperation, scientists on Wednesday proposed the regular transport of moon dust to a gravity point between Earth and Sun to temper the ravages of global warming. Ideas for filtering solar radiation to keep Earth from overheating have been kicking around for decades, ranging from giant space-based screens to churning out reflective white clouds. But the persistent failure to draw down planet-warming greenhouse gas emissions has pushed once-fanciful ge ... read more

CLIMATE SCIENCE
Roscosmos is delaying the launch of the replacement Soyuz for crew return

NASA launches new Framework for Procurement Ideas, Solutions

Saudi Arabia to send its first woman into space

Russia launches resupply ship to int'l space station

CLIMATE SCIENCE
Russian Progress cargo craft docks at space station suffers loss of coolant

NASA conducts first 2023 test of redesigned SLS rocket engine

SpaceX test fires Starship Super Heavy Booster's 31 Engines

Vulcan: Rocket stacked for inaugural launch

CLIMATE SCIENCE
Let's Drill: Sols 3742-3743

Preparing to drill Dinira: Sols 3737-3738

The first in the universe, but what's next

NASA awards Mars mission launch to Blue Origin

CLIMATE SCIENCE
Chinese astronauts complete first walk outside Tiangong space station

Shenzhou XV astronauts take their first spacewalk

Shenzhou XV astronauts to conduct first spacewalk

China's Deep Space Exploration Lab eyes top global talents

CLIMATE SCIENCE
FCC greenlights Amazon's Project Kuiper to deploy 3,236 satellites in LEO

MDA secures new contract to supply Ka-band multibeam antennas for Argentina's ARSAT-SG1 Satellite

AST SpaceMobile announces collaboration with Zain KSA

AST SpaceMobile announces collaboration with TIM

CLIMATE SCIENCE
'Magic' solvent creates stronger thin films

Space Station research announcement for advanced materials and manufacturing open now

Smart contact lens with navigation function, made with 3D printer

Turkey's once mighty developers under fire after quake

CLIMATE SCIENCE
New models shed light on life's origin

Researchers focus AI on finding exoplanets

A nearby potentially habitable Earth-mass exoplanet

Two nearby exoplanets might be habitable

CLIMATE SCIENCE
JUICE's final take-off before lift-off

A new ring system discovered in our Solar System

SwRI models explain canyons on Pluto moon

NASA's Juno Team assessing camera after 48th flyby of Jupiter

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.