. 24/7 Space News .
CARBON WORLDS
Cotton wool proves effective in separating single-wall carbon nanotubes
by Staff Writers
Kazan, Russia (SPX) Apr 26, 2021

The project was kickstarted in 2017 when a delegation of YTC America (subsidiary of Yazaki Corporation) visited Kazan Federal University. During the talks, YTC suggested that KFU participate in developing effective methods of separating single-wall carbon nanotubes (SWCNTs) into metallic and semiconducting specimens. This was to be done on Tuball tubes produced by OCSiAl, since they are the only ones currently available in industrial quantities.

The project was kickstarted in 2017 when a delegation of YTC America (subsidiary of Yazaki Corporation) visited Kazan Federal University. During the talks, YTC suggested that KFU participate in developing effective methods of separating single-wall carbon nanotubes (SWCNTs) into metallic and semiconducting specimens. This was to be done on Tuball tubes produced by OCSiAl, since they are the only ones currently available in industrial quantities.

Carbon nanotubes (CNT) is a family of 1D nanostructures with numerous verified applications, made possible due to their excellent mechanical, optical and conductive properties.

However, application of CNTs is hampered by the presence of species with various structures in the raw production mixture, which obscures unique properties of individual species.

There are various methods for separating CNTs, but they can be hardly scaled up mainly because of the high cost of the used reagents. Notably, most of these methods were originally developed for sorting proteins, and were only recently adopted for separating CNTs.

In this paper, the authors propose a new, cost effective separation method, suitable for the industrial scale processing of CNTs. The method of separation is based on passing the CNTs surfactant solution through a column filled with chemically modified cotton wool.

One of the existing methods of separation, referred to as selective gel permeation, in its essence is a basic column chromatography. Namely, the CNTs surfactant solution is passed through a column, filled with beaded gels of agarose and/or dextran with the trade names "Sepharose" and "Sephacryl".

Both agarose and dextran are polysaccharides made from the glucose or glucose-like building units. Cellulose is a natural polysaccharide consisting of the same structural units. This is why the team decided to try this material as a column filler for selective permeation. Cotton is natural cellulose, possessing high surface area due to the fibrous structure.

Co-author Timur Khamidullin, a PhD student in Ayrat Dimiev's group (Laboratory of Advanced Carbon Nanomaterials, Kazan Federal University) made the first try with natural cotton wool purchased at a local pharmacy.

Despite low sorting efficiency, there was some registered separation, i.e. cotton worked as a column filler. Inspired by the result, Ayrat Dimiev decided to chemically modify the cotton wool to change the chemical nature of its surface. Results were even higher that the expectations: this gave much better separating efficiency from the first very trial. It took another year and half of the collective group efforts to fine-tune both chemical modification of cotton, and the surfactants' ratio in dispersing and eluting solutions.

The use of modified cotton wool allowed to achieve a level of separation which was never reported for Tuball CNTs before. In addition, modified cotton wool is about 200 times cheaper than the agarose- and dextran-based hydrogels, currently employed in the selective gel permeation separation method. The method's scalability is limited only by the diameter of the separation column.

The main contribution to the work was made by group leader Ayrat Dimiev, PhD student Timur Khamidullin, and postdocs Shamil Galyaltdinov and Artur Khannanov.

In the raw production mixture, CNTs of different structures and properties obscure each other's value. Industrial demand for separated CNTs will appear and grow in the coming years. CNTs with metallic type conductivity can be used in flexible transparent conductive films and even potentially replace metals in wiring.

Semiconducting CNTs can be used as transistors and as platforms for imaging and targeted drug delivery due to their distinct and unique emission in the IR region. Thus, efficient methods for separating raw CNT production mixtures would raise application of CNTs on a new scientific and technological level. Moreover, the availability of ready-made separated nanotubes will spur the search for new directions of their application.

The main area of future work is to further increase the efficiency of separation by fine-tuning the separation process parameters and the structure of the modified cotton wool. The optimal structure of the modified cotton wool and the conditions for its production are still not fully understood; this question needs to be fully resolved. After this is achieved, the process should be scaled to industrial quantities, and separated nanotubes with various types of conductivity should be tested for practical solutions.

Research paper


Related Links
Kazan Federal University
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CARBON WORLDS
Engineers unveil large scale CO2 conversion system
Washington DC (UPI) Apr 7, 2021
Technologies designed to convert CO2 into biofuels and useful chemicals have mostly been confined to the laboratory, limited in their scale and efficiency - until now. Engineers in South Korea have developed a large-scale electrochemical CO2 conversion system, as well as a scalable method for producing the catalyst. The new sea urchin-shaped nano copper catalyst electrode - described Wednesday in the journal Nano Energy - is able to convert CO2 into large quantities of ethylene, a hyd ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
Astronaut Kate Rubins: Fresh food in space is rare, desired

Twenty years of Europeans on the Space Station

ISS sets its research scope on longer space missions

Astronauts' mental health risks tested in the Antarctic

CARBON WORLDS
SpaceX in orbit on route to ISS

Arianespace to serve OneWeb's ambitions with 36 more satellites to be launched

American Pacific invests in Frontier Aerospace

SpaceX set to take four astronauts to ISS Thursday

CARBON WORLDS
NASA's Mars helicopter Ingenuity completes third successful flight

MOXIE creates oxygen on Mars

Perseverance extracts first oxygen from Mars surface materials

NASA's Mars helicopter makes second flight

CARBON WORLDS
China's space-tracking ship departs on new mission in Pacific

China Orbiting 400 Satellites, Heading for 1,000 by 2030, US Space Command Chief Says

Chinese rocket for space station mission arrives at launch site

Ningbo to build $3.05b rocket launchpad site

CARBON WORLDS
Ozmens' SNC Launches Sierra Space, an independent commercial space company

OneSat Final Design Review successfully achieved

Jeff Bezos' Amazon signs rocket deal to launch network to rival SpaceX

China to develop aerospace as strategic emerging industry

CARBON WORLDS
"Molecular Tomographer" algorithm maps gene expression in space

US-British firm to build 3.5 bn euro data centre in Portugal

M-42 will measure radiation on the Moon

ESA astronaut Andre Kuipers on sheltering from space debris

CARBON WORLDS
As different as day and night

Researchers identify five double star systems potentially suitable for life

Baked meteorites yield clues to planetary atmospheres

Scientists may detect signs of extraterrestrial life in the next 5 to 10 years

CARBON WORLDS
New Horizons reaches a rare space milestone

New research reveals secret to Jupiter's curious aurora activity

NASA's Europa Clipper builds hardware, moves toward assembly

First X-rays from Uranus Discovered









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.