. | . |
Cosmic Ravioli And Spaetzle by Staff Writers Bern, Switzerland (SPX) May 22, 2018
The small inner moons of Saturn look like giant ravioli and spaetzle. Their spectacular shape has been revealed by the Cassini spacecraft. For the first time, researchers of the University of Bern (Switzerland) show how these moons were formed. The peculiar shapes are a natural outcome of merging collisions among similar-sized little moons, as computer simulations demonstrate. When Martin Rubin, astrophysicist at the University of Bern, saw the images of Saturn's moons Pan and Atlas on the internet, he was puzzled. The close-ups taken by the Cassini spacecraft in April 2017 showed objects that NASA described in its news release as flying-saucers with diameters of about 30 km. With their large ridges and bulbous centres, Pan and Atlas also resembled giant ravioli. Martin Rubin wondered how these peculiar objects had formed and asked his colleague Martin Jutzi whether they could be the outcome of collisions, similar to the one that formed comet Chury as Jutzi had demonstrated earlier with computer simulations. Martin Jutzi and Adrien Leleu, both members of the NCCR PlanetS, took the challenge of calculating the formation process of the small inner moons of Saturn. The first, simple tests worked well. "But then, we took the tidal forces into consideration and the problems piled up," remembers Adrien Leleu. "The conditions close to Saturn are very special," confirms Martin Jutzi. Since Saturn has 95 times more mass than Earth and the inner moons orbit the planet at a distance of less than half the distance between Earth and Moon, the tides are enormous and pull almost everything apart. Therefore, Saturn's inner moons couldn't have formed with these peculiar shapes by gradual accretion of material around a single core. An alternative model called pyramidal regime suggests that these moons were formed by a series of mergers of similar sized little moonlets. Having solved their initial problems, the researchers could verify the pyramidal regime, but even more: They showed that the collisions of the moonlets resulted in exactly the shapes imaged by Cassini. Close to head-on mergers lead to flattened objects with large equatorial ridges, as observed on Atlas and Pan. With slightly more oblique impact angles, collisions resulted in elongated spaetzle-like shapes that closely resembled the 90-km long moon Prometheus as it was photographed by Cassini.
Head-on Collisions Have High Probability "If the impact angle is bigger than ten degrees, the resulting shapes are not stable anymore," says Adrien Leleu. Any duck-shaped object like comet Chury would fall apart because of Saturn's tides. "That is why Saturn's small moons look very different to comets that often have bilobed shapes," explains Martin Jutzi. Interestingly, the head-on collisions are not as rare as one might think. The small inner moons are believed to originate from Saturn's rings, a thin disk located in the planet's equatorial plane. Since Saturn isn't a perfect sphere but rather oblate, it makes it hard for any object to leave this narrow plane. So, near head-on collisions are frequent and the impact angle tends to get even lower in subsequent encounters. "A significant fraction of such merging collisions take place either at the first encounter or after 1-2 hit-and-run events," the authors summarize in their paper published in Nature Astronomy. "In this respect, Saturn is almost a toy system to study these processes," says Martin Rubin. Although the researchers mainly focused on the small inner moons of Saturn, they also found a possible explanation for a long-standing mystery concerning Saturn's third largest moon, named Iapetus. Why does Iapetus have an oblate shape and a distinctive equatorial ridge? "Our modeling results suggest that these features may be a result of a merger of similar-sized moons taking place with a close to head-on impact angle, similar to the smaller moons," the researchers summarize.
Research Report: A. Leleu, M. Jutzi and M. Rubin, "The Peculiar Shapes of Saturn's Small Inner Moons as Evidence of Mergers of Similar-sized Moonlets, 2018 May 21, Nature Astronomy
ASA Advances Instrument to Study the Plumes of Enceladus Greenbelt MD (SPX) Nov 03, 2017 NASA scientists and engineers have conceived and plan to build an ambitious submillimeter-wave or radio instrument to study the composition of geysers spewing water vapor and icy particles from the south pole of Saturn's small moon, Enceladus. The team at NASA's Goddard Space Flight Center in Greenbelt, Maryland, recently received support to advance technologies needed for the Submillimeter Enceladus Life Fundamentals Instrument, or SELFI. This remote-sensing instrument represents a significant im ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |