. | . |
Cool combination produces easier carbon bonds by Staff Writers Groningen, Netherlands (SPX) Apr 26, 2016
By combining two century-old techniques in organic chemistry, Syuzanna Harutyunyan is able to make organic compounds with greater ease and precision. Such compounds are important for drug discovery and development. Harutyunyan's method is described in a paper that will be published by the journal Science on 22 April. Almost 90 percent of known active pharmaceutical ingredients contain one or more 'heterocyclic aromatic rings', structures that contain atoms of at least two different elements. Most of these rings contain carbon and nitrogen atoms. 'Connecting two carbon atoms is a crucial step in synthesizing heterocycle-containing molecules', explains University of Groningen Associate Professor of Synthetic Organic Chemistry Syuzanna Harutyunyan. But carbon-carbon bonds are notoriously difficult to make. An intermediary step is often required, but this makes the synthetic process longer and thus less efficient. Furthermore, many pharmaceutically relevant heterocyclic molecules are chiral, which means they are present in two mirror-image versions. These versions often exhibit different biological activities. 'So we need a way to create the right chiral version as well', says Harutyunyan. In the Science paper, Harutyunyan and her team describe just that: the efficient creation of carbon-carbon bonds with a high chiral selectivity for a wide range of nitrogen-containing heterocyclic molecules. For this breakthrough, Harutyunyan reverted to methods from the early twentieth century. Grignard reagents, originally developed by Victor Grignard, the first laureate of the Nobel Prize for Chemistry in 1912, are still an important tool in creating carbon-carbon bonds. 'But the heterocycles didn't respond much to the Grignard reagent, as they are very unreactive.' This is where another pioneer in organic chemistry and a contemporary of Grignard came to the rescue: Gilbert N. Lewis, the founder of the 'Lewis Acids/Bases Theory'. In this theory, a Lewis acid is any chemical species that attracts free electron pairs. By 'pulling' electrons away, the Lewis Acid can make molecules more reactive. Harutyunyan needed a very strong Lewis acid to activate the heterocyclic molecules. Common sense says that you can't combine the Grignard reagent and the Lewis Acid, as the Grignard reagent is a base which will react with the acid, rendering both useless. However, in previous work, Harutyunyan had shown that this was not the case at low temperatures. 'I have spent much time studying the properties of these reagents, and that inspired me to apply them together at -78 degrees Celsius.' Combining the Grignard reagent and Lewis Acid at a low temperature activates a carbon atom adjacent to the heterocyclic ring and produces carbon-carbon bonds. Harutyunyan added a copper catalyst to provide chiral selectivity. A temperature of -78 degrees Celsius is a bit low for pharmaceutical companies, and the first experiments in the Groningen lab used an ether-based solvent. 'That is too flammable for industry', says Harutyunyan. Modifications to the process resulted in a process that works at -50 degrees Celsius in the friendlier toluene. Pharmaceutical companies have expressed an interest in Harutyunyan's process. 'For drug discovery and development, you need to make variants of lead compounds. This process makes it much easier to do so.' Meanwhile, the team is studying exactly how the Lewis Acid and the Grignard reagent work. 'I'm a bit of a mechanistic buff. Only by finding out exactly how things work, can you improve them.' Harutyunyan hopes to bring the reaction temperature up to -40 degrees or higher. 'Industry is comfortable with that sort of temperature. But my main driver is that I want to understand the process, as something quite special happens.' Research paper: R.P. Jumde; F. Lanza; M.J. Veenstra; S.R. Harutyunyan: Catalytic asymmetric addition of Grignard reagents to alkenyl-substituted aromatic N-heterocycles. Science, 22 April 2016, DOI 10.1126/science.aaf1983
Related Links University of Groningen Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |