. | . |
Continued Gravitational-Wave Discoveries from Public Data by Staff Writers Hannover, Germany (SPX) Mar 16, 2020
Researchers from the Max Planck Institute for Gravitational Physics (Albert Einstein Institute, AEI) in Hannover together with international colleagues have published their second Open Gravitational-wave Catalog (2-OGC). They used improved search methods to dig deeper into publicly available data from LIGO's and Virgo's first and second observation runs. Apart from confirming the 10 known binary black hole mergers and one binary neutron star merger, they also identify four promising black hole merger candidates, which were missed by initial LIGO/Virgo analyses. These results demonstrate the value of searches in public LIGO/Virgo data by research groups independent of the LIGO/Virgo collaborations. The research team also makes available its complete catalogue in addition to detailed analysis of more than a dozen possible binary black hole mergers. "We incorporate cutting edge methods," says Alexander Nitz, a staff scientist at the Max Planck Institute for Gravitational Physics (Albert Einstein Institute) in Hannover, who led the international research team. "Our improvements enable discovering fainter binary black hole mergers: the four additional signals show that this works!"
New Discoveries in Old Data These have been previously analyzed by the LIGO Scientific and the Virgo collaboration. Ten binary black hole mergers and one binary neutron star merger have been found. Another independent analysis had previously found multiple additional black hole mergers. The work led by Nitz confirms 14 of these events and finds one more possible binary black hole merger missed by previous analyses. If real, GW151205 came from a rather distant merger of two massive black holes of about 70 and 40 times the mass of our Sun, respectively. The trick was not only an improved way of ranking potential gravitational-wave signals, but also to target the properties that binary black holes are expected to have. "We have an idea of what the typical mass is of a binary black hole from the signals that were already detected," explains Collin Capano, a senior researcher at the AEI Hannover and co-author of the publication. "Our sensitivity to binary black holes is improved by 50% to 60% by using this information to tune our search to look for the most likely signals."
No New Binary Neutron Star Mergers The 15 signals reported now are only a small part of a larger online catalogue. The team published its complete catalog of events, including statistically less significant candidates and the detailed results of their analysis. "We hope that these data will enable other researchers to conduct future in-depth searches by providing a better understanding of the binary black hole population, as well as background noise," says Sumit Kumar, a senior researcher at the AEI Hannover and co-author of the publication. The results were published in The Astrophysical Journal.
Research Report: "2-OGC: Open Gravitational-wave Catalog of Binary Mergers from Analysis of Public Advanced LIGO and Virgo Data"
Suited up for gravity Paris (ESA) Feb 28, 2020 When it comes to grasping an object, our eyes, ears and hands are intimately connected. Our brain draws information from different senses, such as sight, sound and touch, to coordinate hand movements. Researchers think that, on Earth, gravity is also part of the equation - it provides a set of anchoring cues for the central nervous system. Human evolution has balanced its way across millenia with visual references, self-orientation and the help of the vestibular system. ESA astronaut Luca Pa ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |