![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by richard harth for ASU News Tempe AZ (SPX) Jul 02, 2018
Like our oceans, today's continents are brimming with life. Yet billions of years ago, before the advent of plants, continents would have appeared barren. These apparently vacant land forms were believed to play no role in the early biochemical clockwork known as the nitrogen cycle, which most living things depend on for survival. Now, ASU researcher Ferran Garcia-Pichel, along with Christophe Thomazo, from the Laboratoire Biogeosciences in Dijon, France, and Estelle Couradeau, a former Marie Curie Postdoc in both labs, show that biological soil crusts--colonies of microorganisms that today colonize arid, desert environments--may have played a significant role in the Earth's nitrogen cycle, helping to fertilize early oceans and create a nutrient link between atmosphere, continents and oceans. Garcia-Pichel directs the Biodesign Center for Fundamental and Applied Microbiomics and is a professor in ASU's School of Life Sciences. Originally, a marine microbiologist, he became fascinated with the hidden world of microorganisms that lay on top of soils in deserts and other arid regions devoid of plant life. These living biocrusts have remarkable properties, thriving in extreme conditions, helping to anchor soils in place, so they resist erosion, and fertilizing rangelands and deserts. The new research, which appears in the advanced online edition of the journal Nature Communications, suggests that analogs of these biocrusts spread across otherwise desolate continents of the early Earth, and contributed to establishing the nitrogen cycle essential for life as we know it today.
Evolving atmosphere All this changed with something referred to by geochemists as the Great Oxygenation Event. "That was perhaps the single most important change in the nature of what the planet is. There are telltale signs of this in the rock record, so people have a good idea of when this happened--around 2.45 billion years ago, but conventional wisdom would have this happening in shallow oceans" Garcia-Pichel says. Today, nitrogen makes up 78 percent of the atmosphere. It is a vital element in DNA, RNA and proteins, the key components of life. But the nitrogen found in the atmosphere is not suitable for use by most organisms. It must first be processed, through what is known as the nitrogen cycle. This occurs when prokaryotic organisms carry out nitrogen fixation, making atmospheric nitrogen available in a form useful to plants and animals for survival. While it has long been assumed that the nitrogen cycle that arose early in the Earth's history, resulted from oceanic microbes during an ancient phase known as the Archean, new research suggests significant amounts of nitrogen came from land-based biological soil crusts.
Shifting perspective Recently however, evidence began to appear suggesting that the continents were far from the sterile land masses they had been portrayed as. Instead, intricate microbial communities similar to biocrusts found in present-day desert environments, colonized the early continents. Traces of their presence date to 3.2 billion years ago, well before the Great Oxygenation Event helped set the stage for the Cambrian explosion--a sudden burst of life that gave rise to most of the world's animal phyla. The researchers note that today, such biocrusts occupy roughly 12 percent of the Earth's land. They are composed of filamentous cyanobacteria, which perform most of the biocrust's carbon and nitrogen fixation and provide nutrients to the rest of the crust microbiome, while bonding soil grains together and providing microbial communities with erosion resistance. "These communities live on light," Garcia-Pichel says. "When plants evolved and started to accumulate, this marked their demise. There's no light on the soil anymore because of plant litter accumulation". However, in an early world, before the evolution of plants, there would be nothing to impede their colonization of the continents, where conditions for their growth and development would have been considerably less harsh. As Garcia-Pichel notes, watery environments like oceans and lakes provide superior conditions for fossilization, making the detection of ancient biocrust colonies on land more challenging. This may account in part for the neglect of continental biocrusts as the primeaval land-based ecosystems for much of the planet's history.
A new picture emerges Quantitative analysis suggests that biocrust contribution to nitrogen cycling during the early history of the Earth would have been significant, even with limited colonization of the pre-Cambrian continents. The notion of land-based life forms--the biocrusts--providing a significant contribution to the Earth's early biogeochemistry represents a significant paradigm shift. New research should help establish just how far back in Earth's record these microbial biocrusts extend and help explore their contributions to the cycling of other elements, like phosphorus.
Desert defenders Garcia-Pichel estimates that in the areas around Phoenix, where he works, only 5 percent of the original biocrusts remain. Further, climate change will not only alter the demographics of biocrusts, which vary in their composition according to region, but will render some desert environments too severely arid for their survival. Restoration of these communities is currently a challenging undertaking, part science and part art. The right mix of microbial players must be present for newly seeded communities to survive and flourish. "When you destroy the crust, you make the soil unstable and very prone to erosion," Garcia-Pichel says. "Areas that are deforested of crusts are sources of fugitive dust and sand. The natural protection of the desert is not there, and even moderate winds can raise a haboob. We have been funded for the last 5 years to develop ways to grow these crusts and reseed them in the field. That's an applied part of our work, which is a new thing for our lab."
![]() ![]() Why life on Earth first got big Cambridge UK (SPX) Jun 26, 2018 Some of the earliest complex organisms on Earth - possibly some of the earliest animals to exist - got big not to compete for food, but to spread their offspring as far as possible. The research, led by the University of Cambridge, found that the most successful organisms living in the oceans more than half a billion years ago were the ones that were able to 'throw' their offspring the farthest, thereby colonising their surroundings. The results are reported in the journal Nature Ecology and Evolu ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |