. 24/7 Space News .
EXO WORLDS
Connecting a star's chemical composition and planet formation
by Erica K. Brockmeier for Penn Today
Philadelphia PA (SPX) Jun 11, 2021

An artist's concept of a young star circled by planets and rings of dust that arise when newly-formed, rocky planets collide with one another. A new study presented at the 238th American Astronomical Society conference describes a new method for quantifying the relationship between a star's chemical composition and planet formation, work that could help researchers identify individual stars that have a higher likelihood of hosting planets. (Image: NASA/JPL-Caltech)

Researchers from Penn's Department of Physics and Astronomy have developed a new method for better understanding the relationship between a star's chemical composition and planet formation. The study was led by recent graduate Jacob Nibauer for his senior thesis with Bhuvnesh Jain and was co-supervised by former Penn postdoc Eric Baxter.

The researchers found that the majority of stars in their dataset are similar in composition to the sun, somewhat at odds with earlier work and implying that many stars in the Milky Way could host their own Earth-like planets. These results were presented at the 238th American Astronomical Society conference and also published in The Astrophysical Journal.

The most common technique for finding exoplanets, ones that exist outside of the solar system, involves the transit method, when an exoplanet moves between its star and the observer and causes a dip in the star's brightness. While most of the known exoplanets have been discovered using this method, this approach is limited because exoplanets can only be detected when their orbit and the observer are perfectly aligned and have short enough orbiting periods. The second most powerful technique, the radial velocity or Doppler method, has other limitations in its ability to find planets.

This raises the question, If planets can't be detected around a star, can their existence be inferred by studying the host star? The researchers found that the answer to this question is a qualified yes, with new methods helping astronomers better understand how the formation of exoplanets is related to the composition of the star they orbit.

"The idea is that planets and stars are born out of the same natal cloud, so you can imagine a scenario where a rocky planet locks on to enough material to leave the late stellar surface depleted in those elements," says Nibauer.

"The goal is to answer whether planet-hosting stars look different than stars with no planets, and one way to do that is to search for signatures of planet formation in the composition of the stellar surface. Fortunately, the composition of a star, at least of its outer layers, can be inferred from its spectrum, the distribution of light intensity over different frequencies."

To do this, the researchers used data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE-2), focusing on 1,500 Milky Way galaxy stars with chemical composition data for five different elements. Nibauer's novel contribution was to apply Bayesian statistics to measure the abundance of five rock-forming, or "refractory", elements and objectively separate populations of stars based on their chemical compositions.

Nibauer's method allows researchers to look at stars with low signal-to-noise ratios, or where measurement background can be larger than the star's own signal. "This framework, rather than focusing on a star-by-star basis, combines measurements across the entire population allowing us to characterize the global distribution of chemical abundances," says Nibauer. "Because of that, we're able to include much larger populations of stars compared with previous studies."

The researchers found that their dataset neatly separated stars into two populations. Depleted stars, which make up the majority of the sample, are missing refractory elements compared to the not-depleted population. This could indicate that the missing refractory material in the depleted population is locked up in rocky planets.

These results are consistent with other smaller, targeted studies of stars that use more precise chemical-composition measurements. However, the interpretation of these results differs from previous studies in that the sun appears to belong to a population which makes up the majority of the sample.

"Previous studies were sun-centric, so stars are either like the sun or not, but Jake developed a methodology to group similar stars without referencing the sun," says Jain. "This is the first time that a method which 'let the data speak' had found two populations, and we could then place the sun in one of those groups, which turned out to be the depleted group."

This study also provides a promising avenue to identify individual stars which may have a higher likelihood of hosting their own planets, says Nibauer. "The long-term goal is to identify large populations of exoplanets, and any technique that can place a probabilistic constraint on whether a star is likely to be a planet host without having to rely on the usual transit method is very valuable," he says.

And if Milky Way stars being depleted is the norm, this could mean that the majority of these stars could be orbited by Earthlike planets, opening up the possibility that stars that are "missing" heavier elements simply have them locked up in orbiting rocky exoplanets, though other possible connections to exoplanets are also being explored. "This would be exciting if confirmed by future analyses of larger datasets," says Jain.

Research paper


Related Links
Department of Physics and Astronomy at University of Pennsylvania
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EXO WORLDS
Deep oceans dissolve the rocky shell of water-ice planets
Potsdam, Germany (SPX) May 27, 2021
What is happening deep beneath the surface of ice planets? Is there liquid water, and if so, how does it interact with the planetary rocky "seafloor"? New experiments show that on water-ice planets between the size of our Earth and up to six times this size, water selectively leaches magnesium from typical rock minerals. The conditions with pressures of hundred thousand atmospheres and temperatures above one thousand degrees Celsius were recreated in a lab and mimicked planets similar, but smaller ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
TMC Technologies wins contract to support NASA's IV&V Program

Cyprus, Austria, Greece have EU's cleanest beaches: agency

NASA awards new spacecraft avionics development contract

Adventure-lovers defy gravity on the tallest Chinese TV tower

EXO WORLDS
Axiom Space signs with SpaceX for 3 more private crew missions to ISS

California prepares for more West Coast space launches

NASA stacks elements for upper portion of Artemis II Core Stage

PLD Space receives ESA contract to study reusing MIURA 5 boosters

EXO WORLDS
InSight Mars Lander Gets a power boost

NASA's Curiosity rover captures shining clouds on Mars

Surviving an in-flight anomaly: what happened on Ingenuity's 6th flight

Newly discovered glaciers could aid human survival on Mars

EXO WORLDS
Tianzhou 2 docks with China's new station core module

Spacewalks planned for Shenzhou missions

China cargo craft docks with space station module

New advances inspire China's deep space exploration

EXO WORLDS
Kleos Polar Vigilance Mission Satellites dispatched to Cape Canaveral for Launch

GomSpace wins contract to develop satellites for global air traffic management consortium

GMV supplies operations centre for the new generation of Yahsat satellites

European space program seeks first disabled astronaut

EXO WORLDS
Radiation-hardened MOSFET qualified for commercial and military satellites and space power solutions

SpaceChain to test On-orbit Ethereum Multisignature Transaction Services on ISS

Technique inspired by lace making could someday weave structures in space

CityU scientists make a breakthrough towards solving the structural mystery of glass

EXO WORLDS
Did heat from impacts on asteroids provide the ingredients for life on Earth?

Frozen rotifer reanimated after 24,000 years in the Arctic tundra

Scientists develop new molecular tool to detect alien life

Thirty year stellar survey cracks mysteries of galaxy's giant planets

EXO WORLDS
Leiden astronomers calculate genesis of Oort cloud in chronologically order

NASA's Juno to get a close look at Jupiter's Moon Ganymede

Jupiter antenna that came in from the cold

Experiments validate the possibility of helium rain inside Jupiter and Saturn









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.