. | . |
Computing with time travel by Staff Writers Singapore (SPX) Dec 10142015
Why send a message back in time, but lock it so that no one can ever read the contents? Because it may be the key to solving currently intractable problems. That's the claim of an international collaboration who have just published a paper in npj Quantum Information. It turns out that an unopened message can be exceedingly useful. This is true if the experimenter entangles the message with some other system in the laboratory before sending it. Entanglement, a strange effect only possible in the realm of quantum physics, creates correlations between the time-travelling message and the laboratory system. These correlations can fuel a quantum computation. Around ten years ago researcher Dave Bacon, now at Google, showed that a time-travelling quantum computer could quickly solve a group of problems, known as NP-complete, which mathematicians have lumped together as being hard. The problem was, Bacon's quantum computer was travelling around 'closed timelike curves'. These are paths through the fabric of spacetime that loop back on themselves. General relativity allows such paths to exist through contortions in spacetime known as wormholes. Physicists argue something must stop such opportunities arising because it would threaten 'causality' - in the classic example, someone could travel back in time and kill their grandfather, negating their own existence. And it's not only family ties that are threatened. Breaking the causal flow of time has consequences for quantum physics too. Over the past two decades, researchers have shown that foundational principles of quantum physics break in the presence of closed timelike curves: you can beat the uncertainty principle, an inherent fuzziness of quantum properties, and the no-cloning theorem, which says quantum states can't be copied. However, the new work shows that a quantum computer can solve insoluble problems even if it is travelling along 'open timelike curves', which don't create causality problems. That's because they don't allow direct interaction with anything in the object's own past: the time travelling particles (or data they contain) never interact with themselves. Nevertheless, the strange quantum properties that permit 'impossible' computations are left intact. "We avoid 'classical' paradoxes, like the grandfathers paradox, but you still get all these weird results," says Mile Gu, who led the work. Gu is at the Centre for Quantum Technologies (CQT) at the National University of Singapore and Tsinghua University in Beijing. His eight other coauthors come from these institutions, the University of Oxford, UK, Australian National University in Canberra, the University of Queensland in St Lucia, Australia, and QKD Corp in Toronto, Canada. "Whenever we present the idea, people say no way can this have an effect" says Jayne Thompson, a co-author at CQT. But it does: quantum particles sent on a timeloop could gain super computational power, even though the particles never interact with anything in the past. "The reason there is an effect is because some information is stored in the entangling correlations: this is what we're harnessing," Thompson says. There is a caveat - not all physicists think that these open timeline curves are any more likely to be realisable in the physical universe than the closed ones. One argument against closed timelike curves is that no-one from the future has ever visited us. That argument, at least, doesn't apply to the open kind, because any messages from the future would be locked. Xiao Yuan et al, 'Replicating the benefits of Deutschian closed timelike curves without breaking causality' npj Quantum Information, doi:10.1038/npjqi.2015.7 (2015)
Related Links Centre for Quantum Technologies at the National University of Singapore Understanding Time and Space
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |