. 24/7 Space News .
TIME AND SPACE
Computers help scientists understand the particles that make up atoms
by Staff Writers
Washington DC (SPX) Aug 27, 2021

stock illustration only

Scientists use particle accelerators to speed up electrically charged particles to nearly the speed of light. They then smash those particles together to study the new particles that form, including quarks. However, free quarks cannot be directly observed in isolation due to color confinement.

This phenomenon means certain particles, including quarks and gluons, cannot be isolated. This makes it difficult to study those particles. Now, a team has developed a new method to simulate how quarks combine and interact to make up the larger particles that form the atom's nucleus. These simulations need a lot of computing power.

One way to make them simpler is to simulate quarks that are heavier than the quarks found in nature. Thanks to the power of the Summit supercomputer, the team simulated much lighter quarks than possible in the past. The combination of the power of Summit with the new method created more realistic results.

The Impact
The team's results can be compared with experimental studies. These comparisons help nuclear scientists understand how quarks make up neutrons and protons, the larger particles inside atoms in the Standard Model of Particle Physics. Understanding the properties of individual particles may help scientists draw conclusions about what happens near an important particle called the Higgs boson. The Higgs boson is a particle that is associated with a field that appears to give mass to other elementary particles that interact with it.

Summary
Predicting how quarks interact with other particles is a huge challenge in physics. A team has tackled part of this challenge using the Summit supercomputer at Oak Ridge National Laboratory. Summit is the nation's fastest supercomputer. The team needed to simulate how particles interact while in a vacuum and subject to the strong force.

They used simulated snapshots of the strong force field in the vacuum to calculate what would happen as the particles moved through this field. The calculations required the power of the Summit supercomputer because of the large number of vacuum snapshots needed to get meaningful results. In total, the team took more than 1,000 snapshots over three different masses in simulated cubes with grids ranging from 32,768 to 262,144 points in space. This research will allow scientists to apply these results to real-life data, enabling better predictions about subatomic matter.

Funding
This work was supported by the Department of Energy (DOE) Office of Science Nuclear Physics Program and Jefferson Science Associates, LLC. Three of the researchers were supported by DOE Office of Science Graduate Student Research fellowships through the Office of Workforce Development for Teachers and Scientists, Office of Science Graduate Student Research program.

Computing time was granted by the John von Neumann Institute for Computing; William and Mary, through contributions from the National Science Foundation and the Commonwealth of Virginia Equipment Trust Fund; the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility; and the Oak Ridge Leadership Computing Facility, also a DOE Office of Science User Facility.

Research Report: "Parton Distribution Functions from Ioffe Time Pseudodistributions from Lattice Calculations: Approaching the Physical Point"


Related Links
Science at Department Of Energy
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
In a first, scientists capture a 'quantum tug' between neighboring water molecules
Menlo Park CA (SPX) Aug 26, 2021
Water is the most abundant yet least understood liquid in nature. It exhibits many strange behaviors that scientists still struggle to explain. While most liquids get denser as they get colder, water is most dense at 39 degrees Fahrenheit, just above its freezing point. This is why ice floats to the top of a drinking glass and lakes freeze from the surface down, allowing marine life to survive cold winters. Water also has an unusually high surface tension, allowing insects to walk on its surface, and a ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
State of Russia's ISS segment sparks safety concerns

NASA welcomes new Russian commitment to space station

US grounds Virgin Galactic after trajectory issue

ESA at the 36th Space Symposium

TIME AND SPACE
Firefly Aerospace rocket Alpha explodes after California liftoff

Inspiration4 crew will conduct health research during three day mission

Application of fission-powered spacecraft in solar system exploration missions

DLR Lampoldshausen prepares P5 test stand for the technologies of the future

TIME AND SPACE
NASA plans yearlong Mars simulation to test limits of isolation

NASA's Perseverance Rover obtains first rock core

NASA's Mars simulation hopefuls face tough application process

The forecast for Mars? Otherworldly weather predictions

TIME AND SPACE
Space exploration priority of nation's sci-tech agenda

New extravehicular pump ensures stable operation of China's space station

Chinese astronauts out of spacecraft for second time EVA

China's astronauts make spacewalk to upgrade robotic arm

TIME AND SPACE
World-leading space venture capital firm announces idea-stage incubator

Roscosmos offered ESA extended use of Soyuz In French Guiana

NASA works to give satellite swarms a hive mind

Space science project funding available for UK space projects

TIME AND SPACE
D-Orbit signs with HyImpulse Technologies for EU mission

NASA's Deep Space Network looks to the future

3D-printed lunar floor

New augmented reality applications assist astronaut repairs to Space Station

TIME AND SPACE
Cold planets exist throughout our Galaxy, even in the Galactic bulge

New class of habitable exoplanets are 'a big step forward' in the search for life

Did nature or nurture shape the Milky Way's most common planets

New ESO observations show rocky exoplanet has just half the mass of Venus

TIME AND SPACE
A few steps closer to Europa: spacecraft hardware makes headway

Juno joins Japan's Hisaki satellite and Keck Observatory to solve "energy crisis" on Jupiter

Hubble finds first evidence of water vapor on Ganymede

NASA Awards Launch Services Contract for the Europa Clipper Mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.