24/7 Space News
TIME AND SPACE
Compact accelerator technology achieves major energy milestone
This gas cell is a key component of a compact wakefield laser accelerator developed at The University of Texas at Austin. Inside, an extremely powerful laser strikes helium gas, heats it into a plasma and creates waves that kick electrons from the gas out in a high-energy electron beam.
Compact accelerator technology achieves major energy milestone
by Staff Writers
Austin TX (SPX) Nov 28, 2023

Particle accelerators hold great potential for semiconductor applications, medical imaging and therapy, and research in materials, energy and medicine. But conventional accelerators require plenty of elbow room - kilometers - making them expensive and limiting their presence to a handful of national labs and universities.

Researchers from The University of Texas at Austin, several national laboratories, European universities and the Texas-based company TAU Systems Inc. have demonstrated a compact particle accelerator less than 20 meters long that produces an electron beam with an energy of 10 billion electron volts (10 GeV). There are only two other accelerators currently operating in the U.S. that can reach such high electron energies, but both are approximately 3 kilometers long.

"We can now reach those energies in 10 centimeters," said Bjorn "Manuel" Hegelich, associate professor of physics at UT and CEO of TAU Systems, referring to the size of the chamber where the beam was produced. He is the senior author on a recent paper describing their achievement in the journal Matter and Radiation at Extremes.

Hegelich and his team are currently exploring the use of their accelerator, called an advanced wakefield laser accelerator, for a variety of purposes. They hope to use it to test how well space-bound electronics can withstand radiation, to image the 3D internal structures of new semiconductor chip designs, and even to develop novel cancer therapies and advanced medical-imaging techniques.

This kind of accelerator could also be used to drive another device called an X-ray free electron laser, which could take slow-motion movies of processes on the atomic or molecular scale. Examples of such processes include drug interactions with cells, changes inside batteries that might cause them to catch fire, chemical reactions inside solar panels, and viral proteins changing shape when infecting cells.

The concept for wakefield laser accelerators was first described in 1979. An extremely powerful laser strikes helium gas, heats it into a plasma and creates waves that kick electrons from the gas out in a high-energy electron beam. During the past couple of decades, various research groups have developed more powerful versions. Hegelich and his team's key advance relies on nanoparticles. An auxiliary laser strikes a metal plate inside the gas cell, which injects a stream of metal nanoparticles that boost the energy delivered to electrons from the waves.

The laser is like a boat skimming across a lake, leaving behind a wake, and electrons ride this plasma wave like surfers.

"It's hard to get into a big wave without getting overpowered, so wake surfers get dragged in by Jet Skis," Hegelich said. "In our accelerator, the equivalent of Jet Skis are nanoparticles that release electrons at just the right point and just the right time, so they are all sitting there in the wave. We get a lot more electrons into the wave when and where we want them to be, rather than statistically distributed over the whole interaction, and that's our secret sauce."

For this experiment, the researchers used one of the world's most powerful pulsed lasers, the Texas Petawatt Laser, which is housed at UT and fires one ultra-intense pulse of light every hour. A single petawatt laser pulse contains about 1,000 times the installed electrical power in the U.S. but lasts only 150 femtoseconds, less than a billionth as long as a lightning discharge. The team's long-term goal is to drive their system with a laser they're currently developing that fits on a tabletop and can fire repeatedly at thousands of times per second, making the whole accelerator far more compact and usable in much wider settings than conventional accelerators.

The study's co-first authors are Constantin Aniculaesei, corresponding author now at Heinrich Heine University Dusseldorf, Germany; and Thanh Ha, doctoral student at UT and researcher at TAU Systems. Other UT faculty members are professors Todd Ditmire and Michael Downer.

Hegelich and Aniculaesei have submitted a patent application describing the device and method to generate nanoparticles in a gas cell. TAU Systems, spun out of Hegelich's lab, holds an exclusive license from the University for this foundational patent. As part of the agreement, UT has been issued shares in TAU Systems.

Research Report:The acceleration of a high-charge electron bunch to 10 GeV in a 10-cm nanoparticle-assisted wakefield accelerator

Related Links
University of Texas at Austin
Understanding Time and Space

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TIME AND SPACE
NASA's Cold Atom Lab sets stage for quantum chemistry in space
Pasadena CA (JPL) Nov 16, 2023
The remotely operated facility aboard the International Space Station has created another tool that researchers can use to probe the fundamental nature of the world around us. For the first time in space, scientists have produced a quantum gas containing two types of atoms. Accomplished with NASA's Cold Atom Laboratory aboard the International Space Station, the achievement marks another step toward bringing quantum technologies currently available only on Earth into space. Quantum tools are alrea ... read more

TIME AND SPACE
NASA shuttle astronaut, scientist Mary Cleave remembered as 'trailblazer'

NASA awards $2.3 million to study growing food in lunar dust

U.S. and Saudi Arabia explore space for peaceful purposes

Earth bacteria could make lunar soil more habitable for plants

TIME AND SPACE
NASA Tests In-Flight Capability of Artemis Moon Rocket Engine

NASA, small companies eye new cargo delivery, heat shield technologies

Heat Shield demo passes the test dubbed 'Just flawless'

Boosting rocket reliability at the material level

TIME AND SPACE
Farewell, Solar Conjunction 2023: Sols 4023-4024

California lawmakers ask NASA not to cut Mars budget

Was There Life on Mars

Perseverance's Parking Spot

TIME AND SPACE
China's Lunar Samples on Display in Macao to Inspire Future Explorers

Wenchang Set to Become China's Premier Commercial Space Launch Hub by Next Year

China Manned Space Agency Delegation Highlights SARs' Role in Space Program

Shanghai Sets Sights on Expanding Space Industry with Ambitious 2025 Goals

TIME AND SPACE
Instruments led by IRF selected for ESA potential future mission to either Mars or Earth's Orbit

A major boost for space skills and research in North East England

Ovzon and SSC close to sealing satellite communication contract worth $10M

GalaxySpace to boost mobile broadband with new-gen satellite technology

TIME AND SPACE
Air Force awards UTEP Grant to safeguard assets in space

China launches tech-experiment satellite

A satellite's death spiral

Beyond Gravity unveils reusable payload fairing concept

TIME AND SPACE
First extragalactic exoplanet disc spotted outside of the Milky Way

Discovery of planet too big for its sun throws off solar system formation models

Minimalist or maximalist? The life of a microbe a mile underground

Alien haze, cooked in a lab, clears view to distant water worlds

TIME AND SPACE
Unwrapping Uranus and its icy moon secrets

Juice burns hard towards first-ever Earth-Moon flyby

Fall into an ice giant's atmosphere

Juno finds Jupiter's winds penetrate in cylindrical layers

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.