. | . |
Comet Chury's ultraviolet aurora by Staff Writers Bern, Germany (SPX) Sep 22, 2020
In the aurora borealis on Earth, electrically charged particles of the solar wind move along the Earth's magnetic field. At high latitudes, these strike nitrogen and oxygen atoms and molecules in the upper Earth's atmosphere and cause them to glow. These kinds of or similar aurora phenomena have also been discovered on other planets and their moons. As an international team reported in the Nature Astronomy journal, the phenomenon has now been discovered at comet Chury. The solar wind's particles are responsible for the aurora at Chury as they strike the gas around the comet, also known as the coma. "The resulting glow is one of a kind," says Marina Galand of Imperial College London, lead author of the study. "It's caused by a mix of processes, some seen at Jupiter's moons Ganymede and Europa and others at Earth and Mars."
Aurora observed in far ultraviolet light at a comet for the first time These UV emissions had in fact been observed earlier at Chury. At that time though it was wrongly assumed that these emissions were caused by particles of sunlight, known as photons, similar to the so-called "nightglow" on Earth. "By analyzing the Rosetta data though, it was revealed that solar wind electrons are the reason for the glow and not in fact photons, as previously assumed," continues Galand. "Rosetta is the first mission to observe an ultraviolet aurora at a comet," says Matt Taylor, ESA project scientist. "Auroras are inherently exciting - and this excitement is even greater when we see one somewhere new, or with new characteristics".
Data on gas composition from Bern According to Kathrin Altwegg, the study is evidence that our understanding can be deepened and new insights gained by using data from different teams, instruments and computer models. "And this even years after the official end of the mission in 2016 with the controlled crash of the Rosetta probe onto comet Chury's surface," continues Altwegg. For the current study, Marina Galand and her team analyzed data from the Rosetta Orbiter Spectrometer for Ion and Neutral Gas Analysis (ROSINA) and the Alice UV spectrograph, Rosetta Plasma Consortium (RPC) Ion and Electron Spectrometer (IES) and the Langmuir Probe (LAP), the Microwave Instrument for the Rosetta Orbiter (MIRO) and the Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS).
Aurora as a tool for observing the solar wind "The observation of cometary aurora phenomena definitely has an aesthetic value. Beyond that the UV observations from Earth could one day also provide information about the solar wind at these comets - even without a space probe like Rosetta being on site," explains Martin Rubin.
Rainbow comet with a heart of sponge Paris (ESA) Sep 08, 2020 A permeable heart with a hardened facade -the resting place of Rosetta's lander on Comet 67P/Churyumov-Gerasimenko is revealing more about the interior of the 'rubber duck' shaped-body looping around the Sun. A recent study suggests that the comet's interior is more porous than the material near the surface. The results confirm that solar radiation has significantly modified the comet's surface as it travels through space between the orbits of Jupiter and Earth. Heat from the Sun triggers an eject ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |